west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Myoblast" 21 results
  • HETEROTOPIC CHONDROGENESIS OF CANINE MYOBLASTS ON POLY (LACTIDE-CO-GLYCOLIDE) SCAFFOLDS IN VIVO

    Objective To explore heterotopic chondrogenesis of canine myoblasts induced by cartilage-derived morphogenetic protein 2 (CDMP-2) and transforming growth factor β1 (TGF-β1) which were seeded on poly (lactide-co-glycolide) (PLGA) scaffolds after implantation in a subcutaneous pocket of nude mice. Methods Myoblasts from rectus femoris of 1-year-old Beagle were seeded on PLGA scaffolds and cultured in medium containing CDMP-2 and TGF-β1 for 2 weeks in vitro. Then induced myoblasts-PLGA scaffold, uninduced myoblasts-PLGA scaffold, CDMP-2 and TGF-β1-PLGA scaffold, and simple PLGA scaffold were implanted into 4 zygomorphic back subcutaneous pockets of 24 nude mice in groups A, B, C, and D, respectively. At 8 and 12 weeks, the samples were harvested for general observation, HE staining and toluidine blue staining, immunohistochemical staining for collagen type I and collagen type II; the mRNA expressions of collagen type I, collagen type II, Aggrecan, and Sox9 were determined by RT-PCR, the glycosaminoglycans (GAG) content by Alician blue staining, and the compressive elastic modulus by biomechanics. Results In group A, cartilaginoid tissue was milky white with smooth surface and slight elasticity at 8 weeks, and had similar appearance and elasticity to normal cartilage tissue at 12 weeks. In group B, few residual tissue remained at 8 weeks, and was completely degraded at 12 weeks. In groups C and D, the implants disappeared at 8 weeks. HE staining showed that mature cartilage lacuna formed of group A at 8 and 12 weeks; no cartilage lacuna formed in group B at 8 weeks. Toluidine blue staining confirmed that new cartilage cells were oval and arranged in line, with lacuna and blue-staining positive cytoplasm and extracellular matrix in group A at 8 and 12 weeks; no blue metachromatic extracellular matrix was seen in group B at 8 weeks. Collagen type I and collagen type II expressed positively in group A, did not expressed in group B by immunohistochemical staining. At 8 weeks, the mRNA expressions of collagen type I, collagen type II, Aggrecan, and Sox9 were detected by RT-PCR in group A at 8 and 12 weeks, but negative results were shown in group B. The compressive elastic modulus and GAG content of group A were (90.79 ± 1.78) MPa and (10.20 ± 1.07) μg/mL respectively at 12 weeks, showing significant differences when compared with normal meniscus (P lt; 0.05). Conclusion Induced myoblasts-PLGA scaffolds can stably express chondrogenic phenotype in a heterotopic model of cartilage transplantation and represent a suitable tool for tissue engineering of menisci.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • EFFECTS OF MECHANICAL STIMULATION ON EXPRESSION OF AUTOANTIGENS IN MYOBLASTS

    Objective To explore the effects of mechanical stimulation on the expression of autoantigens in myoblasts. Methods According to different processing methods, C2C12 cells were divided into the experimental group and control group; the experimental group was divided into 4 subgroups: 2-, 4-, and 6-day and 1-day stretch groups. In 2-, 4-, and 6-day stretch groups, mechanical loading was added on the C2C12 cells at a stretching frequency of 0.25 Hz and cellular deformation amplitude of 10%, 2 hours a day for 2, 4, and 6 days respectively by Flexercell 5000 strain unit, and at a stretching frequency of 1 Hz and cellular deformation amplitude of 15% for 1 hour in 1-day stretch group. In the control group, the cells were routinely cultured for 1, 2, 4, and 6 days (1-, 2-, 4-, and 6-day control). The cells were observed by inverted phase contrast microscope. The cell proliferation was detected by flow cytometry; the expressions of autoantigens were detected by Western blot method, including the Ku/the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), U1-70 (A part of ATP-dependent DNA helicase II), histidyl tRNA synthetase (HRS), and Mi-2 (reconfigurable components deacetylase complexes of NuRD). Results The exfoliated cells were found in 1-day stretch group, but no exfoliated cell was seen in the control group for 1-day culture. The cells proliferated more obviously in 2-day stretch group than in the control group for 2-day culture; cell differentiation was found in 4-day stretch group, and cell fusion in 6-day stretch group, which were similar to those in the control group for 4- and 6-day culture. After single stretching, cell apoptosis was found in 1-day stretch group, showing no significant difference in the relative DNA proliferation index (DPI) when compared with DPI of control group for 1-day culture (t=0.346, P=0.747). After cyclic stretching, DPIs of 2- and 4- day stretch groups were significantly increased when compared with those of the control group for 2- and 4-day culture (P lt; 0.05), but no significant difference was found between control group for 6-day culture and 6-day stretch group (t=1.191, P=0.303). Compared with the control group for 2-day culture, the relative protein expression of autoantigens (DNA-Pkcs, Mi-2, HRS, and U1-70) in 2-day stretch group decreased significantly (P lt; 0.05), but no significant difference was found between control group for 4-day culture and 4-day stretch group (P gt; 0.05). The relative protein expressions of autoantigens in 4-day stretch group significantly increased when compared with those of 2-day stretch group (P lt; 0.05), but the relative protein expressions of autoantigens in the control group for 4-day culture significantly decreased when compared with those of the control group for 2-day culture (P lt; 0.05). Conclusion Short-term mechanical stimulation can inhibit the expressions of autoantigens in myoblasts, but with the time prolonging, cell differentiation and fusion and adaptation to mechanical stimulation would result in diminished inhibitory effect.

    Release date:2016-08-31 04:12 Export PDF Favorites Scan
  • IN VIVO STUDY ON TISSUE ENGINEERED SKELETAL MUSCLE WITH HYPOGLOSSAL NERVE IMPLANTATION

    【Abstract】 Objective To construct tissue engineered skeletal muscle in vivo using glial cell derived neurotrophic factor (GDNF) genetically modified myoblast (Mb) on acellular collagen sponge with hypoglossal nerve implantation, and to observe whether structural or functional connection could be established between engineered tissue and motor nerve or not. Methods Mbs were isolated from 7 male Lewis rats at age of 2 days, cultured and genetically modified by recombinant adenovirus carrying GDNF cDNA (MbGDNF). Calf skin-derived acellular collagen sponge was used as scaffold; cell adhesion was detected by scanning electron microscope after 24 hours. Hypoglossal nerve was implanted into Mb-scaffold complex (Mb group, n=27) or MbGDNF-scaffold complex (MbGDNF group, n=27) in 54 female Lewis rats at age of 8 weeks. HE staining was performed at 1, 6, and 12 weeks postoperatively, and immunohistochemistry staining and fluorescence in situ hybridization were used. Results MbGDNF could highly expressed GDNF gene. Mb and MbGDNF could adhere to the scaffold and grew well. HE staining showed tight junctions between implant and peripheral tissue with new muscle fiber and no distinguished line at 12 weeks in 2 groups. Immunohistochemistry staining showed that positive cells of myogenin and slow skeletal myosin were detected, as well as positive cells of actylcholine receptor α1 at 1, 6, and 12 weeks. The positive cells of Y chromosome decreased with time. At 1, 6, and 12 weeks, the positive neurons were 261.0 ± 6.6, 227.3 ± 8.5, and 173.3 ± 9.1, respectively in MbGDNF group, and were 234.7 ± 5.5, 196.0 ± 13.5, and 166.7 ± 11.7, respectively in Mb group; significant differences were found between 2 groups at 1 and 6 weeks (P lt; 0.05), no significant difference at 12 weeks (P gt; 0.05). Conclusion Connection can be established between engineered tissue and implanted hypoglossal nerve. Recombinant GDNF produced by MbGDNF might play a critical role in protecting central motor neurons from apoptosis by means of retrograde transportation.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • A EXPERIMENTAL STUDY ON TRANSFECTING HUMAN STROMAL CELL-DERIVED FACTOR 1α AND HUMAN VASCULAR ENDOTHELIAL GROWTH FACTOR 165 GENES INTO MYOBLASTS IN VIRTO

    Objective To explore the human stromal cell-derived factor 1α (hSDF-1α) and human vascular endothel ial growth factor 165 (hVEGF165) mRNA expressions of the transfected cells after hSDF-1α gene and hVEGF165 gene were transfected into rat myoblasts in vitro so as to lay a foundation for further study on the synergistic effects of 2 genes on tissue engineered skeletal muscle vascularization. Methods The myoblasts of 1-day-old Sprague Dawley rats were cultured and purified by trypsin digestion assay in vitro and were identified by immunohistochemistry staining of Desmin. pproximately 70%-80% of confluent myoblasts were transfected with enhanced green fluorescent protein (EGFP)-hSDF-1α and EGFP-hVEGF165 genes in vitro (transfected group) and were not transfected (control group). The expressions of hSDF-1αand hVEGF165 mRNA and protein in the transfected cells were detected by RT-PCR, ELISA, and Western blot espectively.Results The cultured cells were identified as myoblasts by immunohistochemistry staining of Desmin. The expression ofgreen fluorescent protein was observed in transfected cells, indicating that hSDF-1α and hVEGF165 genes were transfected into myoblasts successfully. The mRNA and protein expressions of the 2 genes were positive in the transfected group by RT-PCR and Western bolt assay at 2, 4, 6, and 8 days after transfection, and were negative in the control group. The expressions of hSDF- 1α and hVEGF165 showed a stable low level in the control group, but the expressions of the proteins increased at 2 days and then showed gradual downtrend with time in the transfected group by ELISA assay. There were significant differences in the expressions of hSDF-1α and hVEGF165 proteins between different time points in the transfected group, and between 2 groups (P lt; 0.05). Conclusion hSDF-1α and hVEGF165 genes are successfully transfected into myoblasts in vitro, and mRNA and proteins of hSDF-1α and hVEGF165 can be expressed in the transfected myoblasts, which may provide the experimental evidence for the expressions of hSDF-1α and hVEGF165 mRNA and proteins in vivo successfully.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON MICRO-DYSTROPHIN GENE TRANSFECTION INTO C57/BL10 MICE’S MYOBLAST

    Objective To investigate the expression of micro-dystrophin gene in myoblast cultured in vitro, to explore the possibil ity of combining myoblast transplantation with gene transfer for Duchenne muscular dystrophy therapy. Methods Competent Escherichia coli JM109 was prepared, which transformed with plasmid pSL139, and positive clones were picked to cultivate. Plasmid was extracted with Alkal ine lysis method and cutted with both Pvu I and Cla I enzyme. Agarose gel electrophoresis was employed to take pictures. Ten healthy 5-7 days old male C57/BL10 mice were selected, weighing4-5 g, the primary and subcultured myoblasts were cultured with multi-step enzymatic digestion and differential adhesionmethod, and Desmin immunofluorescent method was used to identfy. The 3rd generation myoblasts that were transfected with plasmid pSL139 mediated by l iposome served as the experimental group, untransfected cells served as the control group. After 48 hours of transfection, the expressions of micro-dystrophin mRNA and protein in myoblasts were detected with RTPCR and cell immunofluorescent methods, and the transfection efficiency was caculated. Results After pSL139 plasmids being digested and for 40 minutes agarose gel of electrophoresis, 3.75 kb fragment of target gene and vector were observed. The cells were almost uniform, and triangular or diamond shape after 24-48 hours of culture; the cells turned to fusion manner and could be passaged after 4-6 days. Desmin immunofluorescent result showed that green fluorescence was seen in cytoplasm of most 2nd myoblasts, and the purity of the myoblasts was above 90%. At 48 hours after transfection of myoblasts with plasmid pSL139, RT- PCR results showed that about 300 bp fragment was seen in the experimental group and the control group, and the brightness was higher in experimental group. Immunofluorescent staining displayed that green fluorescence was seen in the cytoplasm of the myoblasts in the experimental group and no green fluorescence in the control group; the expression efficiency of positive cells for micro-dystrophin was 45%-55% in experimental group. Conclusion Micro-dystrophin gene can highly express at the levels of mRNA and protein respectively in myoblasts transfected with plasmid pSL139 mediated by l iposome.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF TREATING DUCHENNE MUSCULAR DYSTROPHY WITH MYOBLAST TRANSPLANTATION

    Objective To investigate the effect of myoblast transplantation on duchenne muscular dystrophy (DMD) and to explore the method and feasibil ity of applying gene therapy to DMD. Methods Myoblast of C57/BL10 mice were cultured using multiple-step enzyme digestion method and differential velocity adherent technique. The morphology of the cells was observed with inverted phase contrast microscope. The cells at passage 4 were labeled with 5-BrdU. Twenty-four DMDmodel mice (mdx mice: aged 4-6 weeks, male, 13.8-24.6 g) were randomly divided into two groups (n=12 per group): group A, 1 × 106/mL labeled myoblast were injected via ven caudal is twice at an interval of 2 weeks; group B: 1 mL DMEM/F12 was injected in the same manner serving as a control group. The mice were killed 4 weeks after operation and the motor abil ity of the mice was detected by one-time exhaustive swimming before their death. HE staining and immunohistochemistry staining observation for 5-BrdU, desmin, and dystrophin (Dys) were preformed, and the imaging analysis was conducted. Results The primary myoblast could be sub-cultured 5-7 days after culture, providing stable passage and sufficient cells. The time of onetime exhaustive swimming was (60.72 ± 5.76) minutes in group A and (47.77 ± 5.40) minutes in group B, there was significant significance between two groups (P lt; 0.01). At 4 weeks after injection, HE staining showed that in group A, there were round and transparent-stained myocytes and the percentage of centrally nucleated fibers (CNF) was 67%; while in group B, there were uneven muscle fiber with such pathological changes as hypertrophia, atrophia, degeneration, and necrosis, and the percentage of CNF was above 80%. Immunohistochemistry staining revealed that the expression of 5-BrdU, desmin, and Dys was positive in group A; while in group B, those expressions were l ittle or negative. Image analysis result displayed that integral absorbency (IA) value of desmin was 489.70 ± 451.83 in group A and 71.15 ± 61.14 in group B (P lt; 0.05) and the ratio of positive area to thetotal vision area was 0.314 3 ± 0.197 3 in group A and 0.102 8 ± 0.062 8 in group B (P lt; 0.05); the Dys IA value was 5 424.64 ± 2 658.01 in group A and 902.12 ± 593.51 in group B (P gt; 0.05) and the ratio of positive area to the total vision area was 0.323 7 ± 0.117 7 in group A and 0.035 2 ± 0.032 9 in group B (P lt; 0.05). Conclusion Myoblast transplantation has certain therapeutic effect on DMD of mice.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
  • EFFECT OF IGF-1 ON PROLIFERATION AND DIFFERENTIATION OF PRIMARY HUMAN EMBRYONIC MYOBLASTS

    【Abstract】 Objective To investigate the effect of IGF-1 on the growth of primary human embryonicmyoblasts. Methods The method of incorporation of 3H-TdR was used to evaluate the abil ity of prol iferation of myoblasts.The count per minute (CPM) values of myoblasts at different concentrations(1, 2, 4, 8, 16 and 32 ng/mL) of IGF-1 were measured,and dose-effect curves were drawn to choose the optional concentration of IGF-1 to promote the prol iferation. Then theexperimental group of myoblasts received the addition of the optional concentration of IGF-1 in the growth medium, the controlgroup just received the growth medium. The flow cytometry was used to detect the cell cycle . The method of incorporation of3H-TdR was used to measure the peak-CPM. The myotube fusion rate was measured in myoblasts with different concentrations(0, 5,10, 15, 20, 25 and 30 ng/ mL) of IGF-1 in fusion medium, the dose-effect curves were also drawn, so as to decided the optional concentrationof IGF-1 in stimulating differentiation. Fusion medium with optional concentration of IGF-1 was used in experimentalgroup, and the control group just with fusion medium. The fusion rate of myotube and the synthesis of creatine kinase(CK) weredetected in both groups. Results The optional concentration of 5 ng/mL IGF-1 was chosen for stimulating prol iferation . It was shown that the time of cell cycle of control was 96 hours, but that of the experimental group was reduced to 60 hours. The results of flow cytometry showed that the time of G1 phase, S phase and G2M phase was 70.03, 25.01 and 0.96 hoursrespectively in control group, and were 22.66, 16.47 and 20.87 hours respectively in experimental group. The time-CPM value curves showed that the peak-CPM emerged at 96 hours in control group and 48 hours in experimental group, which was in agreementwith the results of the flow cytometry. The optional concentration stimulating prol iferation was 20 ng/mL IGF-1. Compared with control, the quantity of CK was increased by 2 000 mU/mL and the fusion rate was elevated by 30% in experimental group. Conclusion The concentrations of 20 ng/mL IGF-1 can elevat obviously the fusion rate and the quantity of CK. IGF-1 can enhance the prol iferation and differentiation of myoblasts via inducing the number of myoblasts at G1 phase and increasing the number of myoblasts at S and G2M phases.

    Release date:2016-09-01 09:09 Export PDF Favorites Scan
  • AN EXPERIMENTAL STUDY OF THE ROLE OF MYOSIN LIGHT CHAIN IN MYOGENESIS IN VITRO

    【Abstract】 Objective To investigate the role of myosin l ight chain (Myl) in myogenesis in vitro. Methods The extraocular muscle, diaphragm and gastrocnemius muscle myoblasts (eMb, dMb and gMb) were isolated and purified from 12 3-week-old C57BL/6 mice by using the enzyme digestion and Preplate technique, and then were subcultivated. The Myl expression in Mb was detected by RT-PCR and Western blot analysis; the Mb prol iferation activity was tested by methylene blue assay, and the myotube formation was observed. After anti-Myl antibody (1, 2, 3, 8, 16 ng/mL) was induced in the Mb culture (experimental group), the abil ity of prol iferation of myoblasts and the myotube formation were identified. Meanwhile, the Mb which was cultured without anti-Myl antibody was indentified as the control group. Results The results of RT-PCR and Western blot analysis showed that Myl1 and Myl4 mRNA and Myl protein were expressed in eMb, dMb and gMb at 24 hours after seeding, and their expression level were lower in eMb than in dMb and gMb (P lt; 0.01), and the latter two did not show any significant difference (P gt; 0.05). Myl2 and Myl3 mRNA was not detected in these three myoblasts. The prol iferation assay showed that the eMb prol iferated faster as compared with dMb and gMb (P lt; 0.01). eMb began to yield myotubes at 40 hours after seeding and dMb and gMb at 16 hours after seeding. At 6 days, the number of myotubes derived from eMb was (137.2 ± 24.5)/ field, which was significantly larger than that of myotubes from dMb [(47.6 ± 15.5) / field ] and gMb [(39.8 ± 5.1) field ] (P lt; 0.01). There was not statistically significant difference between the latter two groups (P gt; 0.05). After the antibody treatment, the absorbency values of the eMb, dMb and gMb in the experimental groups at each antibody concentration point were significantly higher than those in the corresponding control groups (P lt; 0.05), and the dose-dependent way was performed.The numbers of myotubes from dMb at 16 hours were (48.2 ± 7.1)/ well in the experimental group and (23.4 ± 4.9)/ well in the control group, and at 6 days were (40.6 ± 10.2)/ field in the experimental group and (63.1 ± 6.1)/ field in the control group.There was statistically significant difference between the experimental and control groups (P lt; 0.01). Conclusion Myl may play a role in myogenesis through the negative effect on the myoblast prol iferation.

    Release date:2016-09-01 09:12 Export PDF Favorites Scan
  • AN EXPERIMENTAL STUDY ON PERIPHERAL NERVE REGENERATION BY CELL-ASSOCIATED THERAPY

    Objective To explore the facilitative effects of different allogenic cells injected into the denervated muscles on the nerve regeneration, the protection of the myoceptor degeneration, and the promotion for rehabilitation of the muscular function. Methods Schwann cells, myoblast cells, and renal endothelial cells were prepared from 400 SD rats aged 7 days and weighing 20.0±2.3 g. Thirty-six adult female SD rats weighing 120-150 g were randomly divided into 4 groups(n=9). Under the asepsis condition, the left ischiadic nerves of all the SD rats were cut off, and the primary suture of the epineurium was performed. After operation, the different corresponding cells were injected into the triceps muscles of the rat calf in each group once per week for 4 times in all. One ml of Schwann cells (1×106/ml) was injected into the rats in Group A; 1 ml of the mixed cells of Schwann cells and myoblast cells (1×106/ml) was injected into the rats in Group B; 1 ml of the extract from the mixed cells of Schwann cells, myoblast cells, and renal endothelial cells (1×106/ml) was injected into the rats in Group C; 1 ml of the culture medium without any serum was injected into the rats in Group D as a control. After operation, observation was made for the general condition of the rats; 3 months after operation, enzymohistochemistry and the CJun expression were performedin the ventricornual motor neuron. At the proximal and the distal ends of the nerve suture, the density of neurilemma cells in the unit area and the area size of the regenerated nerve fibers were observed and measured. Results The affected limbs of the rats in Groups A, B and C improved 13 months after operation. The ulcers and swelling at the ankles gradually relieved and the rats could move normally 3 months after operation. However, the affected limbsof the rats in Group D still had ulcers and swelling, with an obvious contracture of the toes and a difficult movement. Three months after operation, the number of the target muscle myoceptor, the number of the Actin positive cells, the activity of the various enzymes in the denervated muscles, and the histological changes of the regenerated nerves were better in Group C than in Groups A and B (P<0.01); and they were all better in Groups A, B and C than in Group D(Plt;0.01). Conclusion Schwann cells, the mixture of Schwann cells and myoblast cells, and the extract from the mixture of Schwann cells, myoblast cells and renal endothelial cells can all promote neurotization and rehabilitation of the muscular function, and protect against the myoceptor degeneration. However, the effect of the extract is superior to that of Schwann cells or the mixed cells.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON PROTECTIVE EFFECTS OF CELL THERAPY ON VENTRICORNUAL MOTOR NEURON

    Objective To research the protective effects of different allogeneic cells injected into denervated muscles on ventricornual motor neuron. Methods Thirty-six adult female SD rats, weighting 120-150 g, were individed into four groups randomly and each group had nine. Left ischiadic nerves of all the SD rats, which were cut down on germfree conditions,were operated by primary suture of epineurium. Different cells were injected into the triceps muscles of calf in each group after operation with once a week for 4 weeks:1 ml Schwann cells (1×106/ml) in group A, 1 ml mixed cells ofSchwann cells and myoblast cells (1∶1,1×106/ml) in group B, 1 ml extract from the mixed cells of Schwann cells, myoblast cells and endotheliocytes (1∶1∶1,1×106/ml)in group C,and 1 ml culture medium without FCS as control group(group D). The observation of enzymohistochemistry and C-Jun expression in the ventricornual motor neuron was made after three months of operation. Results After 3 months of operation, the expressions of C-Jun in groups A, B and C were superiorto that in group D; the number of neuron was more than that of group D. The expressions of C-Jun in the ventricornual motor neuron were as follows: 128.591±0.766 in group A, 116.729±0.778 in group B, 100.071±2.017 in group C and 144.648±2.083 in group D; showing statistically significant difference between groupsA, B, C and D(P<0.01). Enzymohistochemistry showed the well outlined and wellstacked cell body of neuron in groups A, B and C, and illdefined boundary of cytoplasm and nucleus. There was statistically significant defference in enzyme activity of the ventricornual motor neuron between groups(P<0.01). Conclusion All of the Schwann cells,mixed cells of Schwann cells with myoblast cells,and the extract from Schwann cells, myoblast cells and endotheliocytes can protect the ventricornual motor neuron. And the protectiveeffect of the extract from Schwann cells, myoblast cells and endotheliocytes is superior to that of Schwann cells and mixed cells.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content