Age-related macular degeneration (AMD) is a multifactorial disease affected by environmental factors and genetic variation, which is a major cause of irreversible vision loss in the elderly. miRNA is a kind of endogenous non-coding RNA, which plays an important role in the pathogenesis of AMD, such as oxidative stress, pathological neovascularization and inflammation, by inhibiting or silencing the expression of transcription genes. miRNA has unique advantages in terms of ease synthesis, targeting and additive effect, a large number of experiments have proved the therapeutic potential of miRNA in AMD, which is expected to become a new method for the treatment of AMD in the future. Since the pathogenesis of AMD has not been fully elucidated, it is still necessary to continue to study the pathogenesis of AMD, the biological effects and mechanisms of various miRNA in the occurrence and development of AMD, and observe its therapeutic effects in AMD, so as to provide more effective options for the precise prevention and treatment of AMD.
Purpose To estabalish a quantifying model of retinal neovascularization suitable for the study of pathogenesis and therapeutic intervention for the retinal neovascularization. Methods Sixteen one-week-old C57BL/6 mice were exposed to 75% oxygen for 5 days and then to room air and 16 mice of the same age kept in room air as controls.Ink-perfused retinal flatmount was examined to assess the oxygen-induced changes of retinal vessels.The proliferated neovascular response was quantitated by counting the nuclei of endothelial cells of new vessels extending from the retina into the vitreous in 6 mu;m sagittal cross sections. VEGF and bFGF were determined on the cross-sections after immunohistochemcal stain. Results Constriction and closure of the blood vessels were found under the hyperoxia condition,and dilation and proliferation were found under the relatively hypoxia status.There was a mean of 24 neovascular nuclei per cross-section in the oxygen-treated retina and less than 1 nucleus in the control group (P<0.001).VEGF stain was found ber in the inner retinal layer of oxygen-treated mouse than in that of the controls. Conclusion The quantifying model of retinal neovascularization may fascilitate the further researches of medical intervention and pathogenesis of retinal neovacularization. (Chin J Ocul Fundus Dis,2000,16:213-284)
The therapeutic effects of panretinal cryotherapy(PRC)on proliferative diabetic retinopathy(PDR)were prospectively investigated in 80 eyes with PDR of 44 patients.Forty eyes with PDR(20 of them stage Ⅳ and 20 stage Ⅴ)received PRC operation.Of the 80 eyes,the other 40 ones with stage Ⅳ and Ⅴ similar to the formers were observed conservatively as controls.The follow up duration was 2 years.We found that in the cases of stage Ⅳ,no more remarkable visual loss was found after operation.There was a significant difference comparing with the control(P<0.002),and the retinal neovascularization regressed more noticeably than the control group(P<0.001).In the cases of stage Ⅴ,the incidence of the traction retinal detachment was 55% in the operated group,and was 20% in the control group.There was a statistic difference between them(P<0.05).The clearance of the vitreous hemorrhage was more rapid in the operated group than the control(P<0.025).The above results suggest that cryotherapy is suitable for the cases of earlier stage which cannot be performed with photocoagulation for any reasons,but not for the patients with advanced retinal proliferation.Photocoagulation for any reasons,but not for the patients with advanced retinal proliferation. (Chin J Ocul Fundus Dis,1993,9:148-151)
Objective To investigate auto-cortex of crystalline lens-induced neovascular epiretinal membrane(NVERM)by micro-injuring posterior c apsule of crystalline lens. Methods twenty four C57BL/6 mouse between 4-6 weeks were selected, and divided into two groups randomly: auto-cortex of crystalline group and the control group. The auto-cortex of crystalline group was treated by penetrating the posterior capsule of lens and washing out the lens cortex into the mouse vitreous using PBS (phosphate buffered solution), while the control group were injected PBS into vitreous merely. Clinical change s were followed by slit-lamp examination and photograph. The eye balls were enu cleated at the day of 3, 7, 14 and 28 after operation. Both HE and immunohistoch emistry were used to detect the pathological changes. Results postoperative one to three days, 11 of 12 mouse in autocortex of crystalline g roup, lens appear to alba turbid at different levels one after another, and then develop into highdensity chinaware white. Postoperative (po) three days, HE s taining shows cortex of lens debris transmigrated in vitreous cavity, and some o f which approached to internal limiting membrane and lead it to rough and discon tinue; Po7-14 days, the capillary in retina expanded, migrated and broke though t internal limiting membrane which got to the pro retina and became the new ves sels. And typical NVERM were observed. Po28 days, some vascularslike structure formed in vitreous cavity. None of mouse in control group developed NVERM. Conclusion Auto-cortex of crystalline lens can induced neovascular epiretinal membrane in C57BL/6 mouse. (Chin J Ocul Fundus Dis,2008,24:118-121)
Purpose To investigate the status of proliferation and activation of vascular endothelial cells in preretinal neovascular membranes from patients with insulin dependent diabetetes mellitus(IDDM)by means of immunohistochemical techniques. Methods Status of vascular endothelial cells in 18 preretinal neovascular membranes from 18 patients with IDDM was studied by double-immunofluorescence technique and the alkaline phosphataes-anti-alkaline phosphatase(APAAP)technique and compared the findings with the main clinical features of the patients. Results Of 18 vascularized membranes,16(88.9%)contained proliferating endothelial cells (positive for proliferating vascular endothelial cell marker EN 7/44) and 14 (77.8%) were positive for endothelial cell activation marker anti-VCAM-1;furthermore,by using a double staining technique,we found that in 14 of the 16 cases(87.5%) the proliferating vascular endothelial cells were activated (expressing VCAM-1). Conclusion The proliferation and activation of the vascular endothelial cells of the newly formed vessels in preretinal neovascular membranes suggests the significance of the vascular endothelial cells in the pathophysiology and the progress of proliferative diabetic retinopathy. (Chin J Ocul Fundus Dis,1998,14:141-143)
Objective To compare two kinds of myofascial flap encapsulating adi pose-derived stromal cells (ADSCs) in adi pogenic efficacy in vivo, and to provide experimental basis for the efficient transplantation of free adi pose tissue. Methods ADSCs were isolated from the subcutaneous adipose tissue in the neck of 10 New Zealand rabbits (aged 3-4 months old, male and female, weighing 2.0-2.5 kg), and primary culture and subculture of ADSCs were conducted. When the cells at passage 3 covered 70%-80% of the bottom of the culture flask, BrdU (10 μg/mL) was appl ied to label the cells for 48 hours before performing immunofluorescence staining. Oil red O staining observation was conducted to thosecells 2 weeks after being induced towards adi pocyte, al izarin red staining observation was performed 3 weeks after being induced towards osteoblast, and alcian blue staining was conducted 2 weeks after being induced towards chondrocyte. Besides, after being induced towards adipocyte for 2 weeks, 1 × 107 ADSCs/piece at passage 3 labeled by BrdU was seeded into Col I (10 mm × 10 mm × 5 mm/piece) to prepare cell carrier complex. The experiment was divided into two groups: group A in which vascular pedicled dextral latissimus dorsi fascial flap was adopted to encapsulate the complex; group B in which dextral gluteus maximus fascial flap with no specific vessel pedicle was appl ied to encapsulate the complex. Rabbits in each group went through autogenous ADSCs transplant and self control. The implants were dislodged 8 weeks after operation, HE staining and immunohistochemistry staining were performed to testify cambium, the wet weight and micro vessel count of the cambium in each group were tested, immunofluorescence staining was performed to determine the origin of cambium and microvascular endothel ium. Results The nucleus of ADSCs positive for BrdU label ing showed green fluorescence under fluorescence microscope, with the positive label ing ratio of ADSCs above 90%. For ADSCs at passage 3, the formation of red l ipid droplets within cells was observed 2 weeks after being induced towards adipocyte, red calcium nodules were evident 3 weeks after being induced towards osteoblast, and highly congregated cell mass positive for alcian blue staining appeared 2 weeks after being induced towards chondrocyte. Eight weeks after operation, neogenetic blood vessel grew into scaffolds and no obvious fibreencapsulation was observed in group A, while few blood vessel grew into scaffolds in group B. The wet weight of cambium in group A and B was (0.149 5 ± 0.017 3) g and (0.095 3 ± 0.012 7) g, respectively, indicating there was a significant difference between two groups (P lt; 0.01). HE staining showed the formation of neogenetic adipose tissue and the growth of micrangium in the implant, and the degradation and absorption of scaffold. The micro vessel count of group A and B was 31.2 ± 4.5 and 19.3 ± 2.6, respectively, indicating there was a significant difference between two groups (P lt; 0.01). Eight weeks after operation, the immunofluorescence staining of cambium showed that the cell nucleus of regenerated adi pocytes and partial capillary endothel ium in groups A and B presented green fluorescence. Conclusion ADSCs encapsulated by vascular pedicled latissimus dorsi fascial flap and collagen protein scaffold complex has a higher adi pogenic efficacy in vivo than the gluteus maximus fascial flap with no specific vessel pedicle.
ObjectiveTo investigate the ability of autologous peripheral blood endothelial progenitor cells (EPCs) in promoting neovascularization of tissue engineered bone and osteogenesis of bone marrow mesenchymal stem cells (BMSCs). MethodThe peripheral blood EPCs and BMSCs from No. 1-9 New Zealand rabbits were isolated, cultured, and identified. According to the cell types, the third generation of cells were divided into 3 groups:EPCs (group A), BMSCs (group B), and co-cultured cells of EPCs and BMSCs (group C, EPCs:BMSCs=1:2) . Then cells were seeded on the partially deproteinised bone (PDPB) packaged with fibronectin to construct tissue engineered bone. After 4 days, autologous heterotopic transplantation of tissue engineered bone was performed in the rabbit's muscles bag of groups A, B, and C (the right arm, left arm, right lower limb respectively, 2 pieces each part). At 2, 4, and 8 weeks after transplantation, the growth of tissue engineered bone was observed, and the rate of bone ingrowth was calculated by HE staining; the expressions of CD34, CD105, and zonula occludens protein 1(ZO-1) were compared by immunohistochemical staining at each time point in tissue engineered bone among 3 groups. ResultsThe EPCs and BMSCs were isolated and identified successfully; immunofluorescent staining showed that EPCs were positive for CD34, CD133, and von Willebrand factor (vWF), and BMSCs were positive for CD29 and CD90 and were negative for CD34. The tissue engineered bone constructed in 3 groups was transplanted successfully. At 2, 4, and 8 weeks after autologous heterotopic transplantation, the general observations showed that the soft tissue around the tissue engineered bone increased and thickened gradually in each group with time passing; the boundary between bone and soft tissue was not clear; the pore space of tissue engineered bone gradually was filled, especially in group C, the circuitous vascular network could be seen in the tissue engineered bone. HE staining showed capillaries and collagen fibers increased gradually, tissue engineered bone ingrowth rate was significantly higher in group C than groups A and B at 4 and 8 weeks (P<0.05) , and group B was significantly higher than group A (P<0.05) . Immunohistochemical staining showed that the expressions of CD34, CD105, and ZO-1 in tissue engineered bone of 3 groups all increased with the extension of time, showing significant differences between groups at each time point (P<0.05) . At 2 weeks after transplantation, the expression of CD105 in group C was significantly higher than that in groups A and B (P<0.05) ; at 4 and 8 weeks, CD34, CD105, and ZO-1 expressions showed significant differences between 2 groups (P<0.05) ; the expression was the highest in group C, and was the lowest in group B. ConclusionsAutologous peripheral blood EPCs and BMSCs have synergistic effect, and can promote neovascularization and osteogenesis of tissue engineered bone in vivo.
ObjectiveTo review the osteoclasts (OC) function beyond bone resorption. MethodsThe related literature on OC function beyond bone resorption was reviewed, analyzed, and summarized. ResultsOC control the bone formation through releasing of matrix-derived growth factors, bidirectional cell-to-cell signals, and secreting OC-coupling factors, and play an important role in the niche formation, hematopoietic stem cells mobilization, and maintenance of its quantity and function;besides, OCs also regulate angiogenesis. ConclusionThese discoveries greatly enrich the current knowledge of OC function and open up an all-new research domain. However, the exact regulatory mechanism of OC affecting the hematopoiesis is still lack in-depth understood. Additionally, it remains to be elucidated how OC-coupling factors act on osteoblast lineage differentiation and how OC-induced angiogenesis participates in physiological and pathological processes. Unclosing the underlying mechanisms will facilitate providing scientific therapeutic strategies for treatment of many OC-related diseases.
Objective To determine the expression of the growth factors and the receptors related to angiogenesis in the intraocular tissues incarcerating in the sclerotomy sites. Methods Ten specimens from prolapsing intraocular tissues in sclerotomy sites during vitrectomy were obtained and serially sectioned in cryostate and were stained with a group of polyclonal antibodies against vascular endothelial growth factor(VEGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor-A(PDGF-A) and transforming growth factor-β1(TGF-β1) as well as their receptors by using a streptavidin peroxidase system. Results The tissues prolapsed from the sclerotomy sites were identified as retina(3 cases), vitreous tissues(3 cases), degenerated red blood cell components(2 cases), ciliary body(one case) and fibrous tissue(one case). All specimens expressed VEGF and bFGF as well as their receptors. PDGF-A, TGF-β1 and their receptors expressed in the most of specimens. The positive cells included retinal cells, ciliary non-pigmented epithelial cells and pigmented epithelial cells, fibrous cells and the cells in vitreous. Conclusions The intraocular tissues incarcerated in the sclerotomy entries express the growth factors and receptors related to angiogenesis. This might be one of the potential factors of developing anterior proliferative vitreoretinopathy. (Chin J Ocul Fundus Dis, 2002, 18: 34-37)
ObjectiveTo explore an optimized protocol of decellularization to fabricate an ideal scaffold derived from porcine skeletal muscle acellular matrix. MethodsSerial-step protocol of homogenating-milling-detergent method was used to fabricate decellularized porcine muscle tissue (DPMT) derived from native porcine skeletal muscle tissue from adult pig waist. Histological method was used to assess the effects of decellularization and degreasing. Sirius red staining was used to analyze collagen components. Scanning electron microscopy, BCA assay, and PicoGreen assay were used to evaluate the ultrastructure, total protein content, and DNA content in DPMT. The adipose derived stem cells (ADSCs), NIH3T3 cells, and human umbilical vein endothelial cells (HUVECs) were cultured in extraction liquor of DPMT in different concentrations for 1, 3, and 5 days, then the relative growth rate was calculated with cell counting kit 8 to assess the toxicity in vitro. Live/dead cell staining was used to evaluate the cytocompatibility by seeding HUVECs on the surface of DPMT and co-cultured in vitro for 3 days. For in vivo test, DPMT was subcutaneously implanted at dorsal site of male specific-pathogen free Sprague Dawley rats and harvested after 3, 7, 14, and 28 days. Gross obersvation was done and transverse diameter of remained DPMT in vivo was determined. HE staining and immunohistochemical staining of CD31 were used to assess inflammatory response and new capillary rings formation. ResultsDecellularization of the porcine skeletal muscle tissue by homogenating-milling-detergent serial steps protocol was effective, time-saving, and simple, which could be finished within only 1 day. The decellularizarion and degreasing effect of DPMT was complete. The main component of DPMT was collagen type I and type IV. The DNA content in DPMT was (15.902±1.392) ng/mg dry weight, the total protein content was 68.94% of DPMT dry weight, which was significantly less than those of fresh skeletal muscle tissue[(140.727±10.422) ng/mg and 93.14%] (P<0.05). The microstructure of DPMT was homogeneous and porous. The result of cytocompatibility revealed that the cytotoxicity of DPMT was 0-1 grade, and HUVECs could stably grow on DPMT. In vivo study revealed DPMT could almost maintain its structural integrity at 14 days and it degraded completely at 28 days after implantation. The inflammatory response peaked at 3 days after implantation, and reduced obviously at 7 days. Difference was significant in the number of inflammatory cells between 2 time points (P<0.05). Neovascularization was observed at 7 days after implantation and the number of new vessels increased at 14 days, showing significant difference between at 7 and 14 days (P<0.05). ConclusionThe homogenating-milling-detergent serial-steps protocol is effective, time-saving, and reproducible. The DPMT reveals to be cell and lipid free, with highly preserved protein component. DPMT has good biocompatibility both in vitro and in vivo and may also have potential in promoting neovascularization.