OBJECTIVE To study the compression factor and clinical manifestation of the compression of the palmar cutaneous branch of the median nerve. METHODS Anatomic study was done on both sides of 2 cadavers and 6 cases of hand injury in the debridement, the origin, course, branch of the palmar cutaneous branch of the median nerve were observed. From 1995 to 1998, 12 patients of compression of the palmar cutaneous branch were treated by local blockade injection. Among them, there were 8 males and 4 females, aged from 23 to 65 years and the course of disease ranged 3 to 12 months. RESULTS The palmar cutaneous branch of the median nerve was (1.3 +/- 0.1) mm in diameter, it could be pulled when the wrist dorsi-extension. All cases showed good recovery of hand function and no recurrence after 4 to 12 months follow-up. CONCLUSION The palmar cutaneous branch compression syndrome is closely related to the local anatomy. The diagnosis is definite according to the clinical symptoms and signs, and local blocking is effective on the most patients.
Basing on the experimental results, 48 nerve defects (with the length of 3-4 cm in 21 cases, 4.1-5cm in 25 cases and 6cm in 2 cases) were repaired clinically by using vaseularized nerve sheath canal with living Schwann s cells, 87.5 percent of them obtained good results. The advantages were: (1) The neural sheath had rich blood supply with resultant less scar from its healing; (2) The living Schwann s cells would secrete somatomedin to promote the reproduction of neural tissues; and (3) The useless neurofib...
Objective To observe the effects of the bone marrow mesenchymal stem cells (BMSCs) on the expression of neurotrophic factor protein gene in the retinal detachment (RD) rabbits. Methods 60 healthy rabbits were randomly divided into control group (group A), retinal detachment with PBS group (group B), retinal detachment with BMSCs group (group C), 20 rabbits in each group. RD model were established for rabbits in group B and C. 10 μl PBS was injected into the subretinal space of rabbits in group B, while 10 μl CM-Dil labeled BMSC PBS was injected into subretinal space of rabbits in group C. The rabbits in the group A received no treatment. At 1, 2 and 4 weeks after modeling, the mRNA expression of basic fibroblast growth factor (bFGF), brain derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) were measured by real-time quantitative PCR. Results At 1, 2 and 4 weeks after modeling, the mRNA expression of bFGF, BDNF, CNTF on retinal tissue were increased significantly in group C as compared with group A and B (P < 0.01). At 1 week after modeling, the mRNA expression of bFGF and CNTF on retinal tissue were increased significantly in group B as compared with group A, the mRNA expression of BDNF on retinal tissue in group B was similar with group C. At 2 and 4 weeks after modeling, the mRNA expression of bFGF, BDNF, CNTF were decreased in group B as compared with group A. Conclusion Subretinal transplantation of BMSC can increase the mRNA expression of bFGF, BDNF and CNTF on retinal tissue in RD rabbits.
Objective To study the distribution of P2 Y2 receptor in spine cord, dorsal root ganglia and sciatic nerve in rat, and to provide the basis for clarifying the mechanism of the effect of adenosine triphosphate(ATP) on the peripheral nerve regeneration. Methods Six specimens of the spine cord, dorsal root ganglia and sciatic nerve from SD rats were fixed rapidly in 4% paraformaldehyde which included DEPC, imbedded by paraffin and made into ultrathin section. According to the sequence of P2 Y2 receptor’s gene, DNA needle was adopted to detect the distribution of P2 Y2 receptor by hybridization technique in section under the light microscope after theyhad been stained in NBT liquid(50 mg/ml) and BCIP liquid (75 mg/ml). In thecontrol group, the ultrathin section was only covered with hybridism buffer solution. The result of staining was observed. ResultsHybridization in section showed that P2 Y2 receptor was distributed mainly in the anterior horn cell of spine cordgray matter and Schwann cell of the dorsal root ganglia. No P2 Y2 receptor was observed in the sciatic nerve of both groups. Conclusion P2 Y2 receptor is located mainly in the spine cord and the dorsal root ganglia. Extracellular ATP can affect the cell of spine cord, dorsal root ganglia through P2 Y2 receptor.
OBJECTIVE: To investigate the effect of nerve growth factor(NGF) on the burn wound healing and to study the mechanism of burn wound healing. METHODS: Six domestic pigs weighting around 20 kg were used as experimental animals. Twenty-four burn wound, each 2.5 cm in diameter, were induced on every pigs by scalding. Three different concentrations of NGF, 1 microgram/ml, 2.5 micrograms/ml, 5 micrograms/ml were topically applied after thermal injury, and saline solution used as control group. Biopsy specimens were taken at 3, 5 and 9 days following treatment and immunohistochemistry method was used to detect the epidermal growth factor(EGF), EGF receptor (EGF-R), NGF, NGF receptor (NGF-R), NGF, NGF-R, CD68 and CD3. RESULTS: The expression of EGF, EGF-R, NGF, NGF-R CD68 and CD3 were observed in the experimental group, especially at 5 and 9 days, no expression of those six items in the control group. CONCLUSION: NGF can not only act directly on burn wound, but also modulate other growth factors on the burn wound to accelerate the healing of burn wound.
OBJECTIVE: To investigate the mechanism, diagnosis, and treatment of common fibular nerve compression syndrome secondary to sciatic nerve injury. METHODS: Based on the clinical manifestation and Tinel’s sign at fibular tunnel, 5 cases of common fibular nerve secondary compression following sciatic nerve injury were identified and treated by decompression and release of fibular tunnel. All 5 cases were followed up for 13-37 months, 25 months in average, and were evaluated in dorsal flexion strength of ankle. RESULTS: The dorsal flexion strength of ankle in 4 cases increased from 0-I degrees to III-V degrees, and did not recover in 1 case. CONCLUSION: Fibular tunnel is commonly liable to fibular nerve compression after sciatic nerve injury. Once the diagnosis is established, either immediate decompression and release of the entrapped nerve should be done or simultaneous release of fibular tunnel is recommended when the sciatic nerve is repaired.
ObjectiveTo construct recombinant adenovirus expressing nerve growth factor (NGF) and myelin associated glycoprotein (MAG) (Ad-NGF-MAG) and to investigate its effect on repair and regeneration of sciatic nerve injury in rats. MethodsNGF and MAG gene sequences were cloned into shuttle plasmid pCA13 of adenovirus type 5. After packed in HEK293 cells, the recombinant Ad-NGF-MAG underwent sequence and identification. Thirty-two male Sprague Dawley rats were randomly divided into 4 groups (n=8): control group (normal control), adenovirus vector group (Ad group), Ad-NGF group, and Ad-NGF-MAG group. The sciatic nerve injury model was established by transection of the right sciatic nerve; then, the empty adenovirus vector, Ad-NGF, and Ad-NGF-MAG were injected into the gastrocnemius muscle of the affected limb at a dose of 1×108 PFU every other day for 3 times in Ad group, AdNGF group, and Ad-NGF-MAG group, respectively. The right sciatic nerve was exposed only, and then the incision was closed in the control group. The sciatic nerve function index (SFI) was measured, and neuro-electrophysiology was observed; mRNA and protein expressions of NGF and MAG were detected by RT-PCR and Western blot; and histological examination was performed at 31 days after operation. ResultsRecombinant adenovirus vectors of Ad-NGF and Ad-NGF-MAG were constructed successfully. All rats survived and incision healed by first intension. The SFI, nerve conduction velocity, evoked potential amplitude, and latent period of Ad-NGF-MAG group were significantly better than those of Ad group and Ad-NGF group (P < 0.05). MAG mRNA and protein expressions of Ad-NGF-MAG group were the highest in all the groups (P < 0.05). The expressions of NGF mRNA and protein increased in Ad-NGF group and AdNGF-MAG group when compared with control group and Ad group (P < 0.05). Histological examination showed that the nerve had good continuity in control group; nerve fibers disarranged in Ad group; neurons connections formed in some nerve fibers of Ad-NGF group, but nerve fibers arrange disorderly; and the growth of the nerve were ordered and wellstructured in Ad-NGF-MAG group. ConclusionAd-NGF-MAG can effectively promote the growth of the nerve and inhibit the form of abnormal branches, facilitating the repair of sciatic nerve injury in rats.
ObjectiveTo summarize the applications of Schwann cells (SCs), stem cells, and genetically modified cells (GMCs) in repair of peripheral nerve defects. MethodsThe literature of original experimental study and clinical research related with SCs, stem cells, and GMCs was reviewed and analyzed. ResultsSCs play a key role in repair of peripheral nerve defects; the stem cells can be induced to differentiate into SCs, which can be implanted into nerve conduits to promote the repair of peripheral nerve defect; genetically modified technology can enhance the function of SCs and different stem cells, which has been regarded as a new option for tissue engineered nerve. ConclusionAlthough great progress has been made in tissue engineered nerve recently, mostly limited to the experimental stage. The research of seed cells in application of tissue engineered nerve need be studied deeply.
Objective To construct a bioengineered dermis containing microencapsulated nerve growth factor (NGF) expressing -NIH3T3 cells and to study the effect of the microencapsule on the bioengineered dermis and acute wound healing. Methods A recombinant NGF (PcDNA3.1+/NGF) was constructed and transfected intoNIH-3T3 cells using FuFENETM6 transfection reagent. Positive cell strain was cultured and enclosed in alginate-polylysine-alginate(APA) microcapsules in vitro. Bioengineered dermis was incorporated with NGF-expressing micorencapsules and human fibroblast cells as seed cells using tissue engineering method. The characteristics of the dermis were described by the content of Hydroxyproline(Hyp), HE staining. The content of NGF in the dermis culturing supernatant was measured by ELISA method. These bioengineered dermis were transplanted onto the acute circular full thickness excisional wounds on the dorsum of each swine to observe the rate of reepithelization and wound healing: NGFNIH3T3 microencapsulations(group A), NIH3T3 microencapsulations( group B), empty microencapsulations (group C), NGF incorporated with collagenⅠ( group D) and blank (group E as control group). Results NGF can be tested stably about 124.32 pg/ml in the dermis culturing supernatant after 6 weeks, and the content of Hyp in group A was 69.68±6.20(mg/g wet weight) and increased about 2 times when compared with control groups after 1 week. The tissue engineering skin grafts which can secrete NGF were used to ure the acute wounds and the rate of reepithelization was promoted. The periods of wound healing were 25±2 days in group A, 34±3 days in group B, 34±2 days in group C, 33±2 days in group D and 40±3 days in group E.The period of wound healing was decreased about 10 days at least. Conclusion NGF-expressing NIH3T3 microencapsulates can promote the quality of bioengineered dermis and alsopromote acute wound healing.
Objective To observe in vitro the protective effect of cranial nerve growthine (CNG) on the optic nerve injured by acute ocular hypertension. Methods Thirty white rabbits were divided into five groups,and 6 in each.The acute ocular hypertension(50 mm Hg) models were established by forcing perfusion of normal saline solution into the anterior chamber sustained for 6 h in one eye,and the contral ateral eye of each rabbit was regard as control.Three rabbits in each group were then treated by CNG 0.2 ml intramuscularly every day.The optic nerve and retina was surgically removed at five different time points (lst,3rd,7th,15th and 30th day) after operation.With the HRP orthograde tracing technique and transmitted electron microscope,the effect of CNG on the optic nerve was observed by the changes of axonal transport and ultrastructure of optic nerve. Results Compare with experimental control groups (25.17plusmn;1.03),HRP reactive products of treated groups (39.79plusmn;2.29) markedly increased after seven days (Plt;0.01).The degeneration of axons in treated groups was relatively lighter after fifteen days and some axons recovered after thirty days. Conclusion CNG might improve the axonal transport and the recovery of axons after the optic nerve injured by acute ocular hypertension. (Chin J Ocul Fundus Dis,2000,16:88-90)