Objective To investigate the effect of microRNA-22-3p (miR-22-3p) on the inflammation of human pulmonary microvascular endothelial cells (HPMEC) induced by lipopolysaccharide (LPS) by regulating the HMGB1/NLRP3 pathway. Methods miRNA microarray was taken from peripheral blood of patients with acute respiratory distress syndrome (ARDS) caused by abdominal infection and healthy controls for analysis, and the target miRNA was selected. miRNA mimics, inhibitor and their negative controls were transfected in HPMECs which were stimulated with LPS. Real time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect the mRNA and protein levels of high mobility group box-1 protein (HMGB1) and nucleotide binding oligomerization segment like receptor family 3 (NLRP3). RT-qPCR and enzyme linked immunosorbent assay were used to detect the levels of inflammatory factors in the cells and supernatant. Results miRNA microarray showed that miR-22-3p was down-regulated in the plasma of patients with ARDS. Compared with the negative control group, after miR-22-3p over-expression, the protein and mRNA levels of HMGB1 and NLRP3 decreased significantly. Similarly, the level of cleaved-caspase-1 decreased significantly. At the same time, interleukin (IL)-6, IL-8 and IL-1β mRNA level in cytoplasm and supernatant were down-regulated by miR-22-3p mimics. After transfected with miR-22-3p inhibitor, the expression levels of HMGB1, NLRP3, caspase-1 protein and inflammatory factors were significantly up-regulated. Conclusion miR-22-3p is significantly downregulated in peripheral blood of ARDS patients caused by abdominal infection, which can inhibit the expression of HMGB1 and NLRP3 and its downstream inflammatory response in HPMECs.