In addition to its role as a sex hormone, estrogen aff ects the struc ture and function of many other systems such as the bone, the cardiovascular and the nervous system. Here, we review the most recent supporting evidence for es trogen as an important player in ocular fundus diseases, focusing particularly o n the effects of estrogen on these diseases and the underlying mechanisms. Base d on this, we also discuss the clinical applicability of estrogen in treating va rious agerelated disorders including agerelated macular degeneration and ret in al neurodegeneration. Our growing understanding of estrogenmediated action at a molecular level will provide insight into the controversies surrounding hormon e replacement therapy.
The mineralocorticoid receptor (MR) belongs to the nuclear receptor superfamily and is expressed in the retina and choroid. MR antagonist (MRA) has a long history of application in non-ophthalmic clinical practice. Various cellular and animal models indicated that inappropriate activation of MR participated in pathological angiogenesis, oxidative stress, inflammation, disturbance of ion/water homeostasis and neurodegenerative changes, while the application of MRA can reduce or reverse these pathological processes. After using MRA in central serous chorioretinopathy (CSC) patients, improved visual function, less subretinal fluid and reduced sub-foveal choroidal thickness were observed. Single nucleotide polymorphisms in MR and plasma aldosterone levels were significantly different between chronic CSC patients and CSC patients with spontaneous remission. Novel formulation for sustained-release MRA and the mechanisms involving inflammation may become the new focus of MR study. This review summarizes the research status of MR and MRA in order to provide a reference for future basic research and clinical treatment.
Ocular fundus diseases is a kind of ophthalmic diseases that occur in the vitreous, retina, choroid and optic nerve, including a series of pathophysiological changes such as inflammation, exudation and proliferation. Because of high morbidity and high blindness rate, ocular fundus diseases has been paid more and more attention from medical community. With the continuous deepening of research on its etiology, anatomy and pathological mechanism in recent years, clinicians have obtained more abundant treatment methods than in the past, and the medical treatment of ocular fundus diseases have made many phased progress. However, due to its wide spectrum of diseases and complex pathological mechanism, clinicians still need to further explore more effective treatment methods, and improve the effect of diagnosis and treatment to ocular fundus diseases.
ObjectiveTo compare and analyze the application of anti-vascular endothelial growth factor (VEGF) drugs for intravitreal injection in the real world before and after the establishment of one-stop intravitreal injection center, as well as the advantages and disadvantages of different management modes. MethodsA retrospective clinical study. A total of 4 015 patients (4 659 eyes) who received anti-VEGF drugs for ocular fundus diseases at the Tianjin Medical University Eye Hospital from July, 2018 to June, 2022 were included in the study. There were 2 146 males and 1 869 females. The ocular fundus diseases in this study were as follows: 1 090 eyes of 968 patients with wet age-related macular degeneration (wAMD); 855 eyes of 654 patients with diabetic macular edema (DME); 1 158 eyes of 980 patients with diabetic retinopathy (DR); 930 eyes of 916 patients with macular edema secondary to retinal vein occlusion (RVO-ME). A total of 294 eyes of 275 patients with choroidal neovascularization secondary to pathological myopia (PM-CNV); 332 eyes of 222 patients with other fundus diseases. A total of 13 796 anti-VEGF needles were injected. A total of 1 252 patients (1 403 eyes) from July 2018 to June 2020 were regarded as the control group. From July 2020 to June 2022, 2 763 patients (3 256 eyes) who received anti-VEGF treatment in the intravitreal injection center were regarded as the observation group. The total number of intravitreal injection needles, the distribution of anti-VEGF therapy in each disease according to disease classification, the proportion of patients who chose the 3+ on-demand treatment (PRN) regimen and the distribution of clinical application of different anti-VEGF drugs were compared between the control group and the observation group. The waiting time and medical experience of patients were investigated by questionnaire. χ2 test was used to compare the count data between the two groups, and t test was used to compare the measurement data. ResultsAmong the 13 796 anti-VEGF injections in 4 659 eyes, the total number of anti-VEGF drugs used in the control and observation groups were 4 762 and 9 034, respectively, with an average of (3.39±3.78) and (2.78±2.27) injections per eye (t=6.900, P<0.001), respectively. In the control and observation groups, a total of 1 728 and 2 705 injections of anti-VEGF drugs were used for wAMD with an average of (5.14±4.56) and (3.59±2.45) injections per eye, respectively; a total of 982 and 2 038 injections of anti-VEGF drugs were used for DME with an average of (4.36±4.91) and (3.24±2.77) needles per eye, respectively. Additionally, a total of 942 and 2 179 injections of anti-VEGF drugs were injected for RVO-ME with an average of (3.98±3.71) and (3.14±2.15) injections per eye, respectively; a total of 291 and 615 injections of anti-VEGF drugs were injected for PM-CNV with an average of (3.31±2.63) and (2.99±1.69) injections per eye, respectively. A total of 683 and 1 029 injections of anti-VEGF drugs were injected for DR with an average of (1.60±1.26) and (1.41±1.05) injections per eye, respectively. The clinical application and implementation of "3+PRN" treatment were as follows: 223 (66.4%, 223/336) and 431 eyes (57.2%, 431/754) in the wAMD (χ2=8.210, P=0.004), 75 (33.3%, 75/225) and 236 (37.5%, 236/630) eyes in the DME (χ2=1.220, P>0.05), and 97 (40.9%, 97/237) and 355 eyes (51.2%, 355/693) in the RVO-ME (χ2=7.498, P=0.006), 39 (44.3%, 39/88) and 111 eyes (53.9%, 111/206) in the PM-CNV ( χ2=2.258, P>0.05), respectively. In addition, the results of the questionnaire survey showed that there were significant differences between the control and observation groups regarding the time of appointment waiting for surgery (t=1.340), time from admission to entering the operating room on the day of injection (t=2.780), time from completing preoperative treatment preparation to waiting for entering the operating room (t=8.390), and time from admission to discharge (t=6.060) (P<0.05). ConclusionsThe establishment of a one-stop intravitreal injection mode greatly improved work efficiency and increased the number of injections. At the same time, the compliance, waiting time, and overall medical experience of patients significantly improved under centralized management.
The COVID-19 causes multiple organ dysfunction such as respiratory system, meanwhile it causes ocular fundus diseases threatening visual function. The occurrence of COVID-19 related fundus diseases is associated with retinal capillary ischemia, thrombosis, and immune inflammatory response. COVID-19 related fundus diseases mainly include cotton wool spots and microhaemorrhages, retinal vascular occlusion, paracentral acute middle maculopathy, acute macular neuroretinopathy, uveitis, and endogenous endophthalmitis. We will summarize the clinical characteristics of COVID-19 related fundus diseases based on literature reports and clinical practice, and share some thoughts on its diagnosis and treatment.
Single cell RNA sequencing technique provides a strong technical support for the analysis of cell heterogeneity in biological tissues, and has been widely used in biomedical research. In recent years, considerable scRNA-seq data have been accumulated in the research of ocular fundus diseases. The ocular fundus is abundant for the network of vessel and neuron, which leads to the complicated pathogenesis of fundus diseases. Through single cell RNA sequencing technique, the expression of thousands of genes of certain cell types or even subtypes can be obtained in the disease environment. Single cell RNA sequencing technique accurately reveals the pathogenic cell types and pathogenic mechanisms of ocular fundus diseases such as neovascular retinopathy, which provides a theoretical basis for the birth of new diagnosis and treatment targets. The construction of multi-omics single-cell database of ocular fundus diseases will enable high-quality data to be further explored and provide an analysis platform for ophthalmic researchers.