west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Osteoblasts" 27 results
  • STUDY OF RAT OSTEOBLASTS TRANSFECTED BY TRANSFORMING GROWTH FACTOR-β1 GENE

    Objective To investigate the effect of transforming growth factor-β1 (TGF-β1) gene transfer on the biological characteristics of osteoblasts. Methods The expression of TGF-β1 in the transfected osteoblasts was detected by in situ hybridization and assay of TGF-β1 activity in the supernatant (minklung epithelium cell growth -inhibition test). The effects of gene transfer andsupernatant of the transfected osteoblasts on the proliferation and alkaline phosphatase(ALP) activity of osteoblasts were detected by 3 H-TdR and MTT. Results The results of in situ hybridization analysis suggested that the osteoblasts transfected by TGF-β1 gene could express TGF-β1 obviously. The complex medium, which was the mixture of serum-free DMEM and the activated supernatant according to 1∶1, 1∶2, 1∶4, could inhibit growth of Mv-1-Lu evidently and the ratios ofinhibition were 16.3%, 22.7%, 28.2% respectively. TGF-β1 gene transfer hadno effect on the biological characteristics of osteoblasts, but the activated supernatant of transfected osteoblasts stimulated proliferation and inhibited ALPactivity of osteoblasts. Conclusion TGF-β1 gene transfer promotes the expression of TGF-β1 and the biological characteristics of trasfected osteoblasts are stable, which is helpful for gene therapy of bone defects in vivo.

    Release date: Export PDF Favorites Scan
  • ABSTRACTSCUTURE AND ISOLATION OF PERIOSTEAL OSTEOBLASTS AND AUTORADIOGRAPHICSTUDY OF ITS OSTEOGENESIS

    Osteoblasts were cultured and isolated from a piece of tibial pettiosteum of four New-Zealandrabbits. After subeultured,these cells Were incubatd in vitro with tritiated thvmidine for 36 hoursand then these labeled cells were implanted in the subeutaneous layer of the defects of the auriclarcartilage and the radial bone, After 2 weeks and 4 weeks respectively, these rabbits were killed andthe spoimens were obtained from the site where the cells had been transplanted. The transformation of these cells was observed by autoradiographic method. The results indicated that nearly all of the cultured cells were labeled. After 2 weeks, it was observed that many labeled osteoblasts were in different stages of differentiation, some were beried by extracellular matrix and resembled osteocyte, thers were differentiated into chondrocyte-like cell. In addition, some labeled osteoblasts were congregated in the form of multinucleated osteoclast. After 4 weeks , in the subcutaneous layer the labeled osteoblasts were changed to osteoid tissue and in the defect of the auricular crtilage these cells transformed into chondritic tissue; moreover, those labeled osteoblsts which had been implanted into the radial defect had differentiated into typical bone tissue. The results of this research indicated that the osteoblasts isolated from the periosteum if reimplanted to the same donor might be possible to repair the bone and cartilage defects.

    Release date:2016-09-01 11:18 Export PDF Favorites Scan
  • INFLUENCE OF DOSAGE ON CELL BIOCOMPATIBILITY OF HYDROXYAPATITE/TRICALCIUM PHOSPHATE

    Objective To investigate the influence of different dose levels of hydroxyapatite/tricalcium phosphate (HA/TCP) on the proliferation and alkalinephosphatase (ALP) activity of rabbit osteoblasts. Methods Three different doselevels of HA/TCP (10%, 40%, 70%) were co-cultivated with rabbit osteoblasts respectively. The proliferation and ALP expression capacity of osteoblasts were examined with MTT method and enzyme histochemistry once every 24 hours until 5 days. Three control groups of other materials were treated and examined in the sameway: rabbit osteoblasts as normal control; polyvinylchloride as positive control; titanium alloy as negative control. Results There was remarkable timeeffect relationship in the proliferation of osteoblasts. Ten percent HA/TCP did not affect osteoblasts growth while 40% HA/TCP could slow the cell growth rate down though time-effect relationship still existed. The proliferation of osteoblasts stagnated when co-cultivated with 70% HA/TCP. On the other hand, 10% HA/TCP could cause reversible damage on ALP activity of osteoblasts, whereas when the dose was40%, and the cultivation lasted 6 days the damage was irreversible. Three different dose levels of titanium alloy (10%, 40%, 70%) had no effect on the proliferation or ALP activity of osteoblasts. Conclusion Dosage is an important factor affecting the biocompatibility evaluation of biomaterial. It suggests that dose choosing should be more specified upon each individual biomaterial. It also indicates that ALP may be a good supplementary index of the cell compatibility of material.

    Release date: Export PDF Favorites Scan
  • TISSUE ENGINEERING STUDY ON CHITOSAN-GELATIN / HYDROXYAPATITE COMPOSITE SCAFFOLDS——OSTEOBLASTS CULTURE

    Objective To investigate the behavior of rat calvarial osteoblasts cultured on chitosan-gelatin/hydroxyapatite (CSGel/HA) composite scaffolds. Methods The rat calvarial osteoblasts (the 3rd passage) were seeded at a density of 1.01×106 cells/ml onto the CS-Gel/HA composite scaffolds having porosity 85.20%, 90.40% and 95.80%. Cell number was counted after cultured for 3 days,1 week, 2 weeks and 3 weeks. Cell proliferation, bone-like tissue formation, and mineralization were separately detected by HE, von Kossa histological stainingtechniques. Results The CS-Gel/HA composite scaffolds supported the attachmentof seeded rat calvarial osteoblasts. Cells proliferated faster in scaffold withhigher porosity 90.40% and 95.80% than scaffold with lower porosity 85.20%. The osteoblasts/scaffold constructs were feasible for mineral deposition, and bonelike tissue formation in 3 weeks. Conclusion This study suggests the feasibility of using CS-Gel/HA composite scaffolds for bone tissue engineering.

    Release date: Export PDF Favorites Scan
  • STUDY ON BIOLOGICAL BEHAVIOR OF OSTEOBLAST AND VASCULAR ENDOTHELIAL CELLCULTURE

    Objective To study the biological behavior of osteoblast and vascular endothelial cell culture. Methods The osteoblasts and vascular endothelial cells were obtained from calvarial bone and renal cortox of 2-week rabbits respectively. The experiment were divided into group A (osteoblasts), group B (vascular endothelial cells) and group C(co-cultured osteoblasts and vascular endothelial cells). The cells were identified with cytoimmunochemical staining. The cellular biological behavior and compatibilitywere observed under inverted phase contrast microscope and with histological staining. The cells viability and alkaline phosphatase(ALP) activity were measured. Results The cytoimmunochemical staining showed that the cultured cells were osteoblasts and vascular endothelial cells .The cellular compatibility of osteoblasts and vascular endothelial cells was good. The ALP activity was higher in group C than in group A and group B(P<0.01), and it was higher in group A than in group B(P<0.05). In group C, the cellproliferation were increased slowly early, but fast later. Conclusion Thecellular compatibility of osteoblasts and vascular endothelial cells were good. The vascular endothelial cells can significantly increased the osteoblast viability and ALP activity,and the combined cultured cells have greater proliferation ability.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • EFFECTS OF CORE BINDING FACTOR α1 ON PROMOTION OF OSTEOBLASTIC DIFFERENTIATION FROM MARROW MESENCHYMAL STEM CELLS

    Objective To observe effects of the core binding factor α1 (Cbfα1) in its promoting differentiation of the rabbit marrow mesenchym al stem cells (MSCs) into osteoblasts. Methods The rabbit marrow MSCs were isolated and cult ured in vitro and were divided into 3 groups. In the control group, the marr ow MSCs were cultured by DMEM; in the single inducement group, they were cultured by the condition medium (DMEM, 10% fetal bovine serum, dexamethasone 10 mmol/L, vitamin C 50 mg/L, and βGP 10 mmol/L); and in the experimental group , the ywere transfected with AdEasy1/Cbfα1,and then were cultured by the condition m edium. The alkaline phosphatase(ALP) activity and the experission of osteocalcin as the osteoblast markers were measured with the chemohistological and immunohi stochemical methods at 3 days,1,2,3,and 4 weeks after inducement. Results More than 90% MSCs were grown well in vitro. The GFP was positive in MSCs after their being transfectived with AdEasy1/Cbfα1. The ALP activity and the experission of osteocalcin were significantly upregulated in the transfection group compared with those in the single inducement group and the control group at 1, 2, 3, and 4 weeks (Plt;0.05).The mineralized node began to appear at 2 weeks in the experiment al group and the single induction group, but did not appear in control group. Conclusion Cbfα1 can obviously promote differentiation of the rabb it marrow mesenchymal stem cells into the osteoblasts.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • Src ACTIVATION REQUIRED FOR pERK1/2 ACTIVATION IN FOCAL ADHESIONS IN OSTEOBLASTS INDUCED BY PLATELETDERIVED GROWTH FACTOR

    Objective To study the function of platelet-derived growth factor (PDGF) in inducing phosphorylation extracellular signalregulated kinase 1/2 (pERK1/2) localization in osteoblasts. Methods Primary osteoblasts were isolated and cultured from cranial bone of 10 mice atthe age of 3 days, weighting 6-9 g without limitation in male and female.The sixth passage osteoblasts were incubated in 1% serum for 12 hours and divided into 2 groups: treated with DMSO(control group) or with PP2(experimentalgroup) for 30 minutes. Each group was further divided into 2 subgroups according to with or without PDGF (20ng/ml) stimulation for 10 minutes. pERK1/2 localization was analysized by immunofluorescence staining in osteoblasts pretreated with or without Src inhibitor PP2. The sixth passage osteoblasts were divided into 2 groups treated with DMSO (control group) or with PP2 (experimental group) for 30 minutes. Each group was further divided into two subgroupsaccording to with or without PDGF (20 ng/ml) stimulation for 10 mintues. The ability of osteoblast migration was determined by wound healing assay. The sixth passage osteoblasts were divided into 2 groups treated with DMSO (control group) or 10 μmol/L PP2 (experimental group) for 30 mintues. Each group was further divided into 2 subgroups according to with or without PDGF (20 ng/ml) stimulation.The pERK1/2 was determined by Western blot in osteoblastic cytoskeleton inducedby PDGF. Results Immunofluorescence staining showed pERK1/2 localization in osteoblastic nuclears and focal adhesions after PDGF stimulation. PP2 significantly inhibited ERK1/2 localization in focal adhesions, but not in nuclears. The wound healing assay results showed that PP2 significantly inhibited osteoblast migration induced by PDGF. The result of Western blot demonstrated that pERK1/2 in osteoblastic cytoskeleton was significantly inhibitedSrc activation is required for pERK1/2 translocalization to focal adhesions and osteoblasts migration. 

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • EFFECT OF TITANIUM PARTICLES ON PROLIFERATION, DIFFERENTIATION, AND cytoMORPHOLOGY OF OSTEOBLASTS

    ObjectiveTo study the effect of titanium particles on the proliferation, differentiation, and cytomorphology of osteoblasts, and to explore the possible internal relations and mechanism. MethodsCalvarial osteoblasts were separated from 10 newborn Sprague Dawley rats by repeated enzyme digestion, and were cultured in vitro. The cells were identified by alkaline phosphatase (ALP) staining and alizarin red staining. The cells at passage 3 were cultured with titanium particles culture medium at concentrations of 0.01, 0.05, 0.1, 0.5, and 1 mg/mL (0.01, 0.05, 0.1, 0.5, and 1 mg/mL groups). The absorbance (A) values were detected by cell counting kit 8 at 7 days after cultured to compare the effect of titanium particles at different concentrations on proliferation, and median lethal concentration was screened out. The expression of collagen type I was detected by ELISA to observe the effect of titanium particles on differentiation. The osteoblasts co-cultured with titanium particles of median lethal concentration (experimental group) for 7 days, and double fluorescence staining with FITC-phalloidine and propidium iodide was performed. The cytomorphology variation of osteoblasts after swallowing titanium particles was observed under laser scanning confocal microscope. The osteoblasts at passage 3 cultured with culture medium without titanium particles served as control group. ResultsThe cultured cells were identified as osteoblasts by ALP staining and alizarin red staining. Different concentrations of titanium particles could inhibit osteoblasts proliferation and differentiation in varying degrees, showing significant difference when compared with the control group at 7 days after culture (P<0.05). The cell proliferation and differentiation were decreased with increased titanium particles concentration; significant differences were found between the other groups (P<0.05) except 0.01 and 0.05 mg/mL groups (P>0.05). The median lethal concentration of titanium particles was 0.5 mg/mL. Laser scanning confocal microscope showed cellular shrinking, microfilaments distortion, pseudopodia contraction of osteoblasts that swallowed titanium particles in the experimental group. ConclusionTitanium particles can inhibit proliferation and differentiation of osteoblasts. The effect may be related to variation of cytomorphology after swallowing titanium particles.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF PERIOSTEAL OSTEOBLASTS IN REPAIRING BONE DEFECTS

    Abstract An experiment was carried out to investigate the possibility of the establishment of an osteoblasts bank which could supply osteoblasts in repairing bone defect. Osteoblasts were isolated from thetibial periosteum of eight New-Zealand rabbits and cultured in votro. A bone defect, 1.5cm in length was made in both radii of each of the 8 rabbits. The cultivated osteoblasts, gelfoam as a carrier were randomly implanted into the defects of the radii of rabbits. Accordingly, the contralateral radial defects wereimplanted with gelfoam absorbed with the Hanks solution as control. The healing of bone defects was evaluated by roentgenographic examination at 2, 4, 8 and 12 weeks after operation, respectively. It was shown that the implanted cells had osteogenetic capability and could be possible to promote healing of the bone defects. It was suggested that further study needed to be carried out in this field.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • EFFECT OF VARIOUS STORAGE METHODS ON CELLULAR COMPATIBILITY OF BIO-DERIVED BONE

    Objective To study the effect of various storage methods on cellular compatibility of bio-derived bone. Methods Freeze dried biomaterials had been stored in two different preservation solutions for three months, while the biomaterials stored for the same time were observed as control group. The experiment was divided into groups A, B, C and D according to different storage methods (group A: with materials stored in preservation solution 1; group B:with materials stored in preservation solution 2; group C:with freeze-dried materials; and group D: simple osteoblasts). Osteoblasts at 2×106/ml had been cocultured with materials for 1, 3, 5, and 7 days.The cell-material complexwas observed under phase microscope and electronic scanning microscope to evaluate the adhesion and growth of osteoblasts; the cell viability and alkaline phosphatase(ALP) activity were measured,and the cell cycle wasanalysed by flow cytometer.WTHZ〗Results Osteoblasts adhered to materials preserved by different methods,differentiated and proliferated in the hole of materials. The difference of cell viability was not significant between three groups on day 1 andday 3. The cell viability of osteoblasts adhered to three materials was Agt;Cgt;B group on day 5 and day 7 (Plt;0.01,Plt;0.05). The ALP activity of osteoblasts adhered to three materials was Agt;Cgt;B group on day 7(Plt;0.01).The cell cycle of differentgroups did not change significantly,the abnormal cells were not seen. Conclusion The choice of proper preservation solution can optimize the cellular compatibility of bio-derived bone.

    Release date: Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content