Objective To investigate the influence of different dose levels of hydroxyapatite/tricalcium phosphate (HA/TCP) on the proliferation and alkalinephosphatase (ALP) activity of rabbit osteoblasts. Methods Three different doselevels of HA/TCP (10%, 40%, 70%) were co-cultivated with rabbit osteoblasts respectively. The proliferation and ALP expression capacity of osteoblasts were examined with MTT method and enzyme histochemistry once every 24 hours until 5 days. Three control groups of other materials were treated and examined in the sameway: rabbit osteoblasts as normal control; polyvinylchloride as positive control; titanium alloy as negative control. Results There was remarkable timeeffect relationship in the proliferation of osteoblasts. Ten percent HA/TCP did not affect osteoblasts growth while 40% HA/TCP could slow the cell growth rate down though time-effect relationship still existed. The proliferation of osteoblasts stagnated when co-cultivated with 70% HA/TCP. On the other hand, 10% HA/TCP could cause reversible damage on ALP activity of osteoblasts, whereas when the dose was40%, and the cultivation lasted 6 days the damage was irreversible. Three different dose levels of titanium alloy (10%, 40%, 70%) had no effect on the proliferation or ALP activity of osteoblasts. Conclusion Dosage is an important factor affecting the biocompatibility evaluation of biomaterial. It suggests that dose choosing should be more specified upon each individual biomaterial. It also indicates that ALP may be a good supplementary index of the cell compatibility of material.
OBJECTIVE: To sum up the clinical results of bio-derived bone transplantation in orthopedics with tissue engineering technique. METHODS: From January 2000 to May 2002, 52 cases with various types of bone defect were treated with tissue engineered bone, which was constructed in vitro by allogeneous osteoblasts from periosteum (1 x 10(6)/ml) with bio-derived bone scaffold following 3 to 7 days co-culture. Among them, there were 7 cases of bone cyst, 22 cases of non-union or malunion of old fracture, 15 cases of fresh comminuted fracture of bone defect, 4 cases of spinal fracture and posterior route spinal fusion, 3 cases of bone implant of alveolar bone, 1 case of fusion of tarsotarsal joint. The total weight of tissue engineered bone was 349 g in all the cases, averaged 6.7 g in each case. RESULTS: All the cases were followed up after operation, averaged in 18.5 months. The wound in all the case healed by first intention, but 1 case with second intention. Bone union was completed within 3 to 4.5 months in 50 cases, but 2 cases of delayed union. Six cases were performed analysis of CD3, CD4, CD8, ICAM-1 and VCAM-1 before and after operation, and no obvious abnormities were observed. CONCLUSION: Bio-derived tissue engineered bone has good osteogenesis. No obvious rejection and other complications are observed in the clinical application.
OBJECTIVE: To study the expression of type I collagen and its receptor system-integrin alpha 2 beta 1 in different passages of osteoblasts. METHODS: The expression of type I collagen and integrin alpha 2 beta 1 in the primary, sixth and fifteenth passage of osteoblasts were detected by S-P immunohistological staining technique, and their mRNA expression by quantity RT-PCR technique. RESULTS: Type I collagen and integrin alpha 2 beta 1 were expressed in different passages of osteoblasts and there was no significant difference among three passages by immunohistological technique. Their mRNA expression was gradually decreased with subculture. CONCLUSION: Type I collagen promotes the adhesion and phenotype expression of osteoblasts through its receptor-integrin alpha 2 beta 1. The reductive expression of type I collagen-receptor system will decline the phenotype of osteoblasts.
OBJECTIVE: To evaluate the cellular compatibility of three natural xenogeneic bone derived biomaterials. METHODS: Three types of natural xenogeneic bone derived biomaterials were made with physical and chemical treatment, composite fully deproteinized bone(CFDB), partially deproteinized bone(PDPB) and partially decalcified bone(PDCB). Three types biomaterials were cocultured with human embryonic periosteal osteoblasts. The cell growth, attachment, cell cycle, alkaline phosphatase activity were detected to evaluate the cellular compatibility to biomaterials. RESULTS: Osteoblasts attached on all three biomaterials and grew well, the effect of three biomaterials on cell proliferation was PDCB gt; PDPB gt; CFDB. The cell cycle was not obviously affected by three biomaterials. The effect of three biomaterials on alkaline phosphatase activity of osteoblasts was PDCB gt; PDPB gt; CFDB. CONCLUSION: CFDB,PDPB,PDCB have good cellular compatibility without cytotoxic and tumorigenicity, CFDB is the best. The three biomaterials can be used as scaffold materials of bone tissue engineering.
Objective To investigate the behavior of rat calvarial osteoblasts cultured on chitosan-gelatin/hydroxyapatite (CSGel/HA) composite scaffolds. Methods The rat calvarial osteoblasts (the 3rd passage) were seeded at a density of 1.01×106 cells/ml onto the CS-Gel/HA composite scaffolds having porosity 85.20%, 90.40% and 95.80%. Cell number was counted after cultured for 3 days,1 week, 2 weeks and 3 weeks. Cell proliferation, bone-like tissue formation, and mineralization were separately detected by HE, von Kossa histological stainingtechniques. Results The CS-Gel/HA composite scaffolds supported the attachmentof seeded rat calvarial osteoblasts. Cells proliferated faster in scaffold withhigher porosity 90.40% and 95.80% than scaffold with lower porosity 85.20%. The osteoblasts/scaffold constructs were feasible for mineral deposition, and bonelike tissue formation in 3 weeks. Conclusion This study suggests the feasibility of using CS-Gel/HA composite scaffolds for bone tissue engineering.
Objective To study the effect of various storage methods on cellular compatibility of bio-derived bone. Methods Freeze dried biomaterials had been stored in two different preservation solutions for three months, while the biomaterials stored for the same time were observed as control group. The experiment was divided into groups A, B, C and D according to different storage methods (group A: with materials stored in preservation solution 1; group B:with materials stored in preservation solution 2; group C:with freeze-dried materials; and group D: simple osteoblasts). Osteoblasts at 2×106/ml had been cocultured with materials for 1, 3, 5, and 7 days.The cell-material complexwas observed under phase microscope and electronic scanning microscope to evaluate the adhesion and growth of osteoblasts; the cell viability and alkaline phosphatase(ALP) activity were measured,and the cell cycle wasanalysed by flow cytometer.WTHZ〗Results Osteoblasts adhered to materials preserved by different methods,differentiated and proliferated in the hole of materials. The difference of cell viability was not significant between three groups on day 1 andday 3. The cell viability of osteoblasts adhered to three materials was Agt;Cgt;B group on day 5 and day 7 (Plt;0.01,Plt;0.05). The ALP activity of osteoblasts adhered to three materials was Agt;Cgt;B group on day 7(Plt;0.01).The cell cycle of differentgroups did not change significantly,the abnormal cells were not seen. Conclusion The choice of proper preservation solution can optimize the cellular compatibility of bio-derived bone.
Objective To observe effects of the core binding factor α1 (Cbfα1) in its promoting differentiation of the rabbit marrow mesenchym al stem cells (MSCs) into osteoblasts. Methods The rabbit marrow MSCs were isolated and cult ured in vitro and were divided into 3 groups. In the control group, the marr ow MSCs were cultured by DMEM; in the single inducement group, they were cultured by the condition medium (DMEM, 10% fetal bovine serum, dexamethasone 10 mmol/L, vitamin C 50 mg/L, and βGP 10 mmol/L); and in the experimental group , the ywere transfected with AdEasy1/Cbfα1,and then were cultured by the condition m edium. The alkaline phosphatase(ALP) activity and the experission of osteocalcin as the osteoblast markers were measured with the chemohistological and immunohi stochemical methods at 3 days,1,2,3,and 4 weeks after inducement. Results More than 90% MSCs were grown well in vitro. The GFP was positive in MSCs after their being transfectived with AdEasy1/Cbfα1. The ALP activity and the experission of osteocalcin were significantly upregulated in the transfection group compared with those in the single inducement group and the control group at 1, 2, 3, and 4 weeks (Plt;0.05).The mineralized node began to appear at 2 weeks in the experiment al group and the single induction group, but did not appear in control group. Conclusion Cbfα1 can obviously promote differentiation of the rabb it marrow mesenchymal stem cells into the osteoblasts.
Abstract An experiment was carried out to investigate the possibility of the establishment of an osteoblasts bank which could supply osteoblasts in repairing bone defect. Osteoblasts were isolated from thetibial periosteum of eight New-Zealand rabbits and cultured in votro. A bone defect, 1.5cm in length was made in both radii of each of the 8 rabbits. The cultivated osteoblasts, gelfoam as a carrier were randomly implanted into the defects of the radii of rabbits. Accordingly, the contralateral radial defects wereimplanted with gelfoam absorbed with the Hanks solution as control. The healing of bone defects was evaluated by roentgenographic examination at 2, 4, 8 and 12 weeks after operation, respectively. It was shown that the implanted cells had osteogenetic capability and could be possible to promote healing of the bone defects. It was suggested that further study needed to be carried out in this field.
OBJECTIVE: To isolate and characterize mesenchymal stem cells (MSCs) derived from bone marrow of Banna minipig inbred line (BMI). METHODS: BMI-MSCs was isolated from bone marrow by density gradient centrifugation and cultured in DMEM (containing 15% bovine serum) at 37 degrees C with humidified 5% CO2. These cultured stem cells were characterized in clonal growth, expression of specific markers and capability of differentiation. RESULTS: Mesenchymal stem cells were proliferative and could be expanded rapidly in vitro. Clonal growth of these cells can be observed when small amount of cells was inoculated. These cells were SH2, SH3, SH4, SB10 and SB21 positive. And it was proved that these cells possess osteo-differentiation ability, up-regulated alkaline phosphatase expression and calcium secretion after osteosupplement was added into the media for several days. CONCLUSION: Mesenchymal stem cells derived from bone marrow of BMI possess the general characters of stem cell.
Objective To investigate the possibility of ectomesenchymal stem cell of human embryo facial process in differentiating into osteoblasts.Methods Ectomesenchymal stem cells of human embryo facial process were isolated and cultured in mineralized promoting solution containing 10 mmol/L β-glycerophosphate, 100 μg/ml ascorbic acid and 10 nmol/L dexamethasone supplemented with 15% FBS. The morphological change was observed by phase contrast microscopy. The characteristics of cells was identified by immunohistochemistry assay. Alkaline phosphatase activity was tested and the form of mineralized nodules was tested with Von Kossa staining. The expression of osteocalcin was identified by RT-PCR.Results There were significant changes in the shape of the cells after 3 days cultured in mineralized promoting solution. The cells became larger and the shape changed from fibroblast-like to multilateral. The result for anticollogen typeⅠstaining was positive. The alkaline phosphatase activity increased. Mineralized nodules were formed aftercultured 25 days by Von Kossa staining. RT-PCR assay showed induced cells expressed osteocalcin.Conclusion Ectomesenchymal stem cells of humanembryo facial process can be induced to differentiate into osteoblasts by mineralized promoting solution.