Objective To study the effect of recombinant adeno-associated virus (rAAV) vector co-expressing human vascular endothel ial growth factor 165 (hVEGF165) and human bone morphogenetic protein 7 (hBMP-7) genes on bone regeneration and angiopoiesis in vivo so as to provide a theoretical basis for the gene therapy of avascular necrosis of thefemoral head (ANFH). Methods Twenty-four male adult New Zealand rabbits were made the ischemic hind l imb model and divided into 4 groups (n=6). The 3rd generation rabbit bone marrow mesenchymal stem cells (BMSCs) were transfected with the following 4 virus and were administered intramuscularly into the ischemic thigh muscle of 4 groups, respectively: rAAVhVEGF165- internal ribosome entry site (IRES)-hBMP-7 (group A), rAAV-hVEGF165-green fluorescent protein (GFP) (group B), rAAV-hBMP-7-GFP (group C), and rAAV-IRES-GFP (group D). At 8 weeks after injection, the blood flow of anterior tibial artery in the rabbit hind l imb was detected by ultrasonographic image. Immunohistochemical staining for CD34 was performed to identify the prol iferation of capillary. Another 24 male adult New Zealand rabbits were made the femur muscle pouch model and divided into 4 groups (n=6). The above 4 BMSCs transfected with rAAV were administered intramuscularly into the muscle pouch. At 8 weeks after injection, X-ray radiography was used to assess orthotopic bone formation, and von Kossa staining to show mineral ization. Results No symptoms of local or systemic toxicity were observed after rAAV injection. At 8 weeks after injection, the ratio of ischemic to normal blood flow and the number of capillaries in group A were the highest among 4 groups (P lt; 0.05). The ratio of ischemic to normal blood flow and the number of capillaries in group B were significantly higher than those in group C and group D (P lt; 0.05). However, there was no significant difference between group C and group D (P gt; 0.05). At 8 weeks after injection, orthotopic ossification and mineral ization were evidently detected in group A and group C, and group A was ber than group C. No obvious evidence of orthotopic ossification and mineral ization were observed in group B and group D. Conclusion rAAV-hVEGF165-IRES-hBMP-7 vector has the biological activities of inductive bone regeneration and angiopoiesis in vivo.
OBJECTIVE To investigate the factors which affect the bone union of distracted region after limb lengthening, so as improve the curative effect and diminish the incidence of complication. METHODS To look up the latest literatures dealing with the bone union in limb lengthening, then review the procedure of osteogenesis and the affecting factors. RESULTS The osteogenesis of distracted region after limb lengthening is a sophisticated procedure. It can be affected by the velocity of lengthening, the period of lengthening, the site and method of osteotomy, the age etiology of patient. CONCLUSION The bone union of distracted region after limb lengthening can be facilitated by following factors: 1. the velocity of lengthening slower than 1.0 mm/day; 2. moderate delay in distraction; 3. axial shortening of distracted region; 4. micromovement stimulation.
Objective To evaluate the osteogenesis of bi phasic ceramic-l ike biologic bone (BCBB) with tissue engineering in repairing segmental bone defects. Methods BMSCs isolated from the femoral and tibial marrow of 2-weekold Japanese white rabbit were cultured to passage 3. Then 20 μL of the cell suspension at a concentration of 1 × 107 cells/mLwere seeded into 15 mm × 15 mm × 5 mm BCBB block; the construction of tissue engineered BCBB was completed after 8 days of compound culture. Forty-eight adult Japanese white rabbits were randomly divided into groups A, B, C and D, then BCBBs cultured with BMSCs in vitro for 8 days (group A) and only BCBBs without BMSCs (group B) were respectively implanted into the radius segmental bone defects of rabbits, autogenous il iac bone graft (group C) and empty defect (group D) were used as controls. The specimens were examined after 4, 8, 12 and 24 weeks, the osteogenesis was evaluated through X-ray radiograph and histology examination. Results X-ray examination: the border between the material and host’s bone was clear after 4 weeks, and blurred after 8 weeks in group A and group B; the density of some part of the edge of the material was similar to that of radius and there was high density imaging in the materials of group A after 12 weeks; there was much high density imaging in the materials of group B after 12 weeks. The medullary cavity of bone was formed and l ittle high density imaging in the materials of group A after 24 weeks. Some high density imaging still existed in the materials of group B after 24 weeks. The X-ray evaluated scores showed that the scores of group A was higher than that of group B, and there was significant difference between group A and group B after 12 and 24 weeks (P lt; 0.05). Histological examination: there was new bone formation in the materials and also new bone grew adhesively on the surface of BCBB in group A. While in group B only new bone grew and attached to the surface of BCBB. BCBB degraded more with the time and more new bone formed. The histological evaluation showed that the bone forming area in group A was more than that in group B, and there was significant difference between group A and group B (P lt; 0.05). Conclusion The osteogenesis of BCBB with tissue engineering was superior to only BCBB, BCBB could be used as a scaffold of bone tissue engineering.
In order to explore further the regulatory factors to the potentiality in inducing osteogenesis by fibroblasts, the fibroblasts were isolated, and purified from human skin, and were grown in incubation in the media of EGF, IL-6, TNF-alpha and BMP2 at different concentrations for two weeks, then, the markers for osteogenic features were investigated by biochemistry, histochemistry and electron microscopic observations. It was found that the combined use of TNF-alpha and BMP2 could stimulate fibroblasts to secrete alkaline phosphatase, osteocalcin and collagen, and the morphological changes of the fibroblasts were also very striking. In the extracellular matrix, the collagen fibrils, with or without periodicity, were arranged regularly or randomly oriented, and numerous minute calcium granules were interspersed among them. The fibroblasts were interwoven one on top of another in the form of multilayer structure and on the surface, there were secreting granules and piling up of calcium crystals which coalessed steadily and increased in size in forming bony nodules. It was considered that TNF-alpha and BMP2 were capable of inducing the fibroblasts to form bone.
Objective To explore the paracrine effect of bone marrow mesenchymal stem cells (BMSCs) on dexamethasone-induced inhibition of osteoblast function in vitro. Methods The serum free conditioned medium of mouse BMSCs cultured for 24 hours was prepared for spare use. The 3rd passage of MC3T3-E1 cells were divided into 4 groups: the control group (group A), dexamethasone group (group B), dexamethasone+BMSCs conditioned medium (1:1) group (group C), and BMSCs conditioned medium group (group D). After 24 hours of culture, the alkaline phosphatase (ALP) content was determined; the protein expressions of RUNX2 and Osteocalcin were detected by Western blot; and the gene expressions of collagen type I-α 1 (COL1A1), RUNX2, ALP, and Osteocalcin were detected by real-time fluorescence quantitative PCR (RT-qPCR); alizarin red staining was used to observe calcium nodules formation at 21 days. Results After cultured for 24 hours, ALP content was significantly lower in groups B, C, and D than group A, and in group B than groups C and D (P < 0.05), but no significant difference was found between groups C and D (P > 0.05). The relative protein expression of RUNX2 of group B was significantly lower than that of groups A, C, and D (P < 0.05), but difference was not significant between groups A, C, and D (P > 0.05). The relative protein expression of Osteocalcin was significantly lower in group B than groups A, C, and D, in groups A and C than group D (P < 0.05), but difference had no significance between groups A and C (P > 0.05). The relative gene expressions of RUNX2, Osteocalcin, COL1A1, and ALP of groups B, C, and D were significantly lower than those of group A (P < 0.05); the relative gene expressions of RUNX2, Osteocalcin, and ALP were significantly higher in group D than groups B and C, in group C than group B (P < 0.05). The gene expression of COL1A1 was significantly higher in group D than group B (P < 0.05), but difference was not significant between groups B and C, and between groups C and D (P > 0.05). The cells of group A all died at 6 days after culture; at 21 days, the calcium no dule staining was positive by alizarin red in groups B, C and D, and the degree of the staining gradually increased from groups B to D. Conclusion BMSCs conditioned medium can alleviate the inhibitory effect of dexamethasone on osteoblasts function.
ObjectiveTo observe the ability of osteogenesis in vivo using the injected absorbable polyamine acid/calcium sulfate (PAA/CS) composites and assess their ability to repair bone defects. MethodWe selected 48 New Zealand white rabbits, and half of them were male with a weight between 2.0 and 2.5 kg. Bone defect models were made at the rabbit femoral condyle using electric drill, and the rabbits were divided into two groups. One group accepted implantation of the material at the defect, while nothing was done for the control group. After four, eight, twelve and sixteen weeks, the animals were killed. The line X-ray and hard tissue slices histological examination (HE, MASSON staining) were observed to assess the situation of degradation, absorption and bone formation of the material. ResultsFour weeks after operation, bone defect of the experimental group had no obvious callus growth on X-ray imaging. Histology showed that the material began to degrade and new immature trabecular bone grew. The bone defect of the experimental group had a small amount of callus growth on X-ray imaging after eight weeks. And histology showed that the material continued to degrade and new immature trabecular bone grew continually. There was an obvious callus growth after twelve weeks, and the bone defect area had smaller residual low-density shadow on X-ray imaging. Histology showed that most of the materials degraded and parts of woven bone grew into lamellar bone. After sixteen weeks, the composites were absorbed completely, replaced by new bone tissues, and the new bone was gradually changed from woven bone into mature plate of bone. There was no significant change in bone defect in the control group within twelve weeks, and part of bone defect hole became smaller, and partial edge repair could be detected. ConclusionsThe PAA/CS composites can be completely degraded and absorbed, with a certain activity of bone formation, expected to be used as bone repair materials.
OBJECTIVE To observe the osteogenesis of percutaneous autogenous bone marrow grafting in cicatricial bone defect, to seek a good method for treating fracture nonunion. METHODS Eighteen rabbits were adopted in this study. 1 cm bone defect model was made in each side of radius, 6 weeks later, 2 ml autogenous bone marrow was injected in the right radial bone defect as experimental group, 2 ml autogenous peripheral blood in the left side as control group. X-ray features, histologic changes, Ca and P content in the site of bone defect were studied in various times. Also 15 patients were treated clinically for the nonunion fracture, the average time from nonunion to bone marrow grafting was 13 months. RESULTS In experimental group, the increasing new bone tissue were observed in X-ray and histologic examination. While in control group, no osteogenesis was observed. Ca and P content of experimental group was higher than that of control group. For the 15 patients, 13 cases healed in 5-9 months, 2 cases failed. CONCLUSION Percutaneous autogenous bone marrow grafting is capable of osteogenesis in the cicatricial bone defects. It can be used in nonunion cases which are not fit for operation of bone grafting because of poor condition of the skin.
Ceramiclike xenogeneic bone (CXB) was obtained from the fresh bone of pig ribs being treated by physical and chemical methods to deprive of its organic substance. The CXB possessed the same natural porous network system as that of the human. The CXB was cultured with the bone marrow stromal cells of rabit. When the marrow cells had integrated with the CXB, thus a new material was obtained. (CXB-BM), and was implanted sacro-spinal muscle of rabbit. The specimens were observed under phase microscope, light microscope and electronic scanning microscope. The results showed that: at the 2nd week after the implantation of CBX-BM composite material there began the new bone formation, and the rate of bone formation was increased with time. There was evident new bone formation after 24 weeks. The process of the new bone formation were quite similar to the composite graft of HAP red autogenous and marrow, but the former degraded faster and formed typical cancellous structure earlier. There was no new bone formation when CXB was implanted alone in the control. Both the mechanism of osteogenetic potential and its clinical application were discussed.
OBJECTIVE To study the bone formation and osteogenesis after transplantation of human periosteal mesenchymal stem cells(PMSC). METHODS Suspension of PMSC which obtained from cell culture of periosteal segments in vitro were injected into the backs of nude mice subcutaneously, and the fracture site of neck of femur in old person. RESULTS Subdermal nodules were observed by naked eyes after 11 days of transplantation. 4 weeks later, their anatomic diameter reached 2-7 mm(averaged 3.6 mm). It was proved that the subdermal nodules were trabecular ball trapped with fibrous tissue. The nodules were investigated by human special apoB gene with PCR, and the test of anti-human-tissue precipitin reaction(AHTPR). The results of PCR and AHTPR were positive reaction. There were no subdermal nodules formed in the sites of injection of frozen-melted PMSC or culture medium. The new callus in the sites of fracture were tested by PCR test, and two kinds of apoB gene products were detected. CONCLUSION The results indicated that the implanted PMSC could form new bone directly in nude mice, and the cells of donor and recipient all could form new bone.
ObjectiveTo review the development and applications of hypoxia-inducible factor 1α (HIF-1α) in the strategy of tissue engineered angiogenesis and osteogenesis. MethodThe literature about HIF-1α in tissue engineering technology was reviewed, analyzed, and summarized. ResultsHIF-1α plays a key role in angiogenic-osteogenic coupling, and as an upstream regulator, HIF-1α can regulate the expressions of its target genes related with angiogenesis and osteogenesis. In addition, HIF-1α not only can control and improve the angiogenesis, but also has important significance in proliferation and differentiation of seed cells, especially stem cells, which is the foundation for bone healing. ConclusionsWith the development of tissue engineering technology, the problems in the applications of HIF-1α, such as the effective dose of targeting controlled-release, pro-inflammatory effect, and carcinogenicity, will be explored and solved in the future, so it can be used better in clinical.