west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "PEI Guoxian" 8 results
  • RESEARCH PROGRESS ON THREE-DIMENSIONAL RECONSTRUCTION AND VISUALIZATION OF PERIPHERAL NERVE

    Objective To review the research progress on the three-dimensional (3D) reconstruction and visual ization of peri pheral nerve. Methods Literature about the research on the 3D reconstruction and visual ization of peripheral nerve both at home and abroad were extensively reviewed and thoroughly analyzed. Results The appl ication of 3D reconstruction and visual ization technology was capable of not only reappearing the 3D outer contour and spatial adjacent relationship of peripheral nerve veritably but also displaying, rotating, zooming, dividing and real-time measuring their 3D internal structure and the del icate pathways in any direction either separately or totally. Prel iminary achievements were achievedin terms of brachial plexus, lumbosacral plexus, the functional cluster of nerve trunk, intramuscular nerve distribution pattern, peripheral nerve regeneration and the 3D reconstruction and visual ization research of complex tissue including peripheral nerve. However, the research on the visual ization of peripheral nerve was still in the initial stage since such problems as recognition, segmentation, registration and fusion of the peripheral nerve information were not resolved yet. Conclusion Researching 3D reconstruction and visual ization of the peripheral nerve is of great value for updating the diagnosis and treatment principle of peripheral nerve injury, improving its diagnosis and treatment method and launching a new way for the studying and teaching, which may be a new growing point for the peripheral nerve surgery.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • PSYCHOLOGY DURING THE PROCESS OF HUMAN HAND ALLOGRAFT

    OBJECTIVE: To study the psychology and its management during the process of hand allograft. METHODS: One psychologist participated through the whole process of the present hand allograft. 12 potential candidates of hand transplant were interviewed during the selection of patients to evaluate the state of psychiatry and their abilities to manage stressors like cooperation with medical workers and medical interventions, waiting for donors, adaptation to a new hand and post operation depression. The psychological state of 11 patients were believed to be able to receive hand transplant, and they are further prepared psychologically by the psychologist while waiting for a donor. Two lucky candidates were decided by tissue typing and received hand allograft simultaneously. After the operation, the two patients psychotherapy assisted with effective analgesia, supporting from family and environmental improvement. RESULTS: One out of 12 patients was found not suitable for the transplantation because of psychiatric problem. One week postoperation, the 2 patients were anxious, lack of patience, and horrified at seeing the long-expected grafted hand. After 1 week of treatments and adapation the patients managed to settle with the new hand, and accepted the hand as a whole 1 month postoperation. With the recovery of the hand sensation and motion 4 to 5 months postoperation, the patients held the hand as his own. CONCLUSION: Psychologists are required in the hand transplantation team during the pre-transplant selection of patients and post-transplant rehabilitation.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • FUNCTIONAL ASSESS FOR RECONSTRUCTION OF TENDON IN FINGER AMPUTATION

    OBJECTIVE: To evaluate the function of injured hand after repair of finger stump and reconstruction of digit tendon attachment in finger amputation. METHODS: From 1992 to 1998, 20 cases with amputation of the 2nd to the 5th fingers were investigated, of which reconstruction of digit tendon attachment in 10 cases (group A) and routine operation without reconstruction of digit tendon attachment in other 10 cases (group B). After 6 months of operation, the tension test, fatigue test the sense of stability in motion and the perimeter of forearm in injured hand and the corresponding healthy hand were compared. RESULTS: The differences were remarkable (P lt; 0.01) between group A and group B in the tension test of injured finger, the fatigue test, the sense of stability in motion and the perimeter of injured arm. CONCLUSION: The digit of injured finger should be reconstructed in finger amputation in order to furthest maintain the function of injured hand.

    Release date:2016-09-01 10:28 Export PDF Favorites Scan
  • IN VITRO QUANTUM DOT-LABELED RAT BONE MARROW MESENCHYMAL STEM CELLS

    Objective To explore the cytotoxicity, labeled time, marking rate, and effect on adhesion of quantum dot 655 (QD655) labeled rat bone marrow mesenchymal stem cells (BMSCs) in vitro, and to confirm its feasibil ity for stem cell label ing and tracer means for rat. Methods BMSCs were collected from the femur and tibia bone marrow cavity of a 2-week-old SD rat, cultured and identified. The 3rd passage of BMSCs were incubated with QD655 as the experimental groupaccording to the recommended concentration of the markers. The cells were not labeled by QD655 as control group. Thecell survival rate after QD655 label ing was detected by trypan-blue exclusion. The effect of QD655 on cell prol iferation was observed by MTT. The osteogenic differentiation potential was identified by Al izarin red staining, alkal ine phosphatase (ALP) staining, and real-time fluorogenic quantitative PCR. At immediately, 1, 2, 4, and 6 weeks, fluorescent microscopy was used to observe the labeled rate and scanning electron microscope was used to observe the cell adhesion to scaffold (bioglass/collagen composite). Results The cell survival rates were more than 90% in both experimental group and control group, showing no significant difference (P gt; 0.05). There was no significant difference in the cell prol iferation between 2 groups (P gt; 0.05). Al izarin red staining and ALP staining showed positive results. Real-time fluorogenic quantitative PCR result showed that the mRNA expression levels of osteopontin, osteocalcin, collagen type I, ALP, and BMP-2 in the experimental group was significantly higher than those in the control group. The labeled rates were 96.50% ± 1.59%, 93.30% ± 1.51%, 72.40% ± 2.90%, 40.10% ± 3.60%, and 10.00% ± 1.70% immediately, 1, 2, 4, and 6 weeks after label ing, respectively. The labeled rate in the control group was 0. Scanning electron microscope showed a good distribution of fusiform or polygonal cells in the pores of scaffold. Conclusion QD655 can be used as a label ing marker for BMSCs. Rat BMSCs labeled with QD655 is of high efficiency and safety.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • EFFECT OF TISSUE ENGINEERED BONE IMPLANTATION WITH VASCULAR BUNDLE AND SENSORY NERVEBUNDLE ON EXPRESSION OF NEUROKININ 1 RECEPTOR AND VASOACTIVE INTESTINAL PEPTIDE TYPE 1RECEPTOR IN VIVO

    Objective Vascular bundle and sensory nerve bundle implantation can promote the osteogenesis of tissue engineered bone. To investigate whether vascular bundle and sensory nerve bundle implantation will affect the expressions of neurokinin 1 receptor (NK1R) and vasoactive intestinal peptide type 1 receptor (VIPR1). Methods Fifty-four 5-montholdNew Zealand rabbits were selected. Autologous bone marrow was aspirated from the posterior il iac spine of rabbits, and the bone marrow mesenchymal stem cells (BMSCs) were prol iferated in vitro. At the 3rd passage, the BMSCs were cultured in the osteogenic culture medium for 7 days. The tissue engineered bone was prepared by the combined culture of these osteoblastic induced BMSCs and β tricalcium phosphate scaffold material. A 1.5 cm segmental bone defect was created at the right femur of rabbits. After the plate fixation, defects were repaired with sensory nerve bundle plus tissue engineered bone (group A, n=18), with vascular bundle plus tissue engineered bone (group B, n=18), and tissue engineered bone only (group C, n=18). X-ray examination was used to evaluate the degree of the ossification. The expression levels of NK1R and VIPR1 were measured by the immuohistochemistry analysis and the mRNA expression of NK1R and VIPR1 by real-time PCR at 4, 8, and 12 weeks after operation. Results The better osteogenesis could be observed in group A and group B than in group C at all time points. X-ray scores were significantly higher in group B than in groups A and C (P lt; 0.05) at 4 weeks, and in groups A and B than in groupC (P lt; 0.05) at 8 and 12 weeks. The mRNA expressions of NK1R and VIPR1 were highest at 8 weeks in groups A and B and gradually decreased at 12 weeks (P lt; 0.05); the expressions were higher in groups A and B than that in group C (P lt; 0.05), and in group B than group A (P lt; 0.05). Immunohistochemistry analysis showed that the expressions of NK1R and VIPR1 were highest at 8 weeks in 3 groups, and the expressions were higher in groups A and B than in group C. Conclusion Implanting vascular bundles into the tissue engineered bone can significantly improve the expression levels of NK1R and VIPR1. It is an ideal method to reconstruct composite tissue engineered bone.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • PROMOTED VASCULARIZATION OF ENHANCED BIOACTIVE GLASS/COLLAGEN COMPOSITE SCAFFOLD

    Objective Rapid and effective vascularization of scaffolds used for bone tissue engineering is critical to bony repair. To study the cooperative and promotion effects of enhanced bioactive glass/collagen composite scaffold on vascularization for searching for a kind of el igible vascularized scaffold to repair bone defect. Methods The human umbil ical vein endothel ial cells (HUVECs) were collected from human umbil ical core, and identified through von Willebrandfactor (vWF) and CD34 immunofluorescence. The 1st passage of HUVECs were suspensed and seeded into the scaffold. The attachment and prol iferation of HUVECs on the scaffold were observed through scanning electron microscope (SEM). HUVECs were seeded on the scaffold as the experimental group, and on 96-well plate as the control group. The growth rate of HUVECs was detected through alarmarBlue at 1, 3, 5, 7, 9, and 11 days. Meanwhile, the mRNA expression levels of VEGF, fms-related tyrosine kinase 1 (Flt-1), and kinase insert domain receptor (Kdr) were detected through real-time fluorescence quantitative PCR. Twelve scaffolds were embedded subcutaneouly into 6 Sprague-Dawley rats. The enhanced scaffolds were used and the arteria and vein saphena bundle were embedded straightly through the central slot of scaffold in experimental group, and the common scaffolds were used in control group. Frozen section and HE staining of scaffolds were performed at 5 days and 10 days to observe the vascularization of embedded scaffold. Results HUVECs were identified through morphology, vWF and CD34 immunofluorescence. SEM results showed HUVECs could attach to the scaffold tightly and viably. HUVECs prol iferated actively on the scaffold in experimental group; the growth rate in experimental group was higher than that in control group at 3-11 days, showing significant differences within 5-11 days (P lt; 0.05). The real-time fluorescence quantitative PCR results showed thatthe mRNA expression levels of VEGF, Flt-1, and Kdr in experimental group were higher than those in control group at 3 days, showing significant differences (P lt; 0.05). Frozen section and HE staining of the scaffolds in experimental group showed that the embedded vessel bundle were still patency at 5 days and 10 days, that many new vessels were observed around the embedded vessel bundle and increased with time, host vessels infiltrated in the surrounding area of scaffold and fewer neo-vessels at the distant area. But there was only some fibrous tissue appeared in control group, and at 10 days, the common scaffold degradated, so few normal tissue appeared at the embedded area. Conclusion Enhanced bioactive glass/collagen composite scaffold can promote vascularization in vitro and in vivo, and may be used in bone tissue engineering.

    Release date:2016-08-31 05:43 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON CONSTRUCTION OF NEUROTIZATION TISSUE ENGINEERED BONE FOR REPAIRING LARGE BONE DEFECTS IN RABBIT

    Objective Construction of viable tissue engineered bone is one of the most important research fields in the cl inical appl ication of bone tissue engineering, to investigate the function of nerve factors in bone tissue engineering by celldetection in vitro and construction of neurotization tissue engineered bone in vivo. Methods Fifty-four healthy New Zealandwhite rabbits, male or female, weighing 2-3 kg, were involved in this study. Bone marrow mesenchymal stem cells (BMSCs) from the bone marrow of white rabbits were cultured. The second passage of BMSCs were treated with sensory nerve or motor nerve homogenates, using the LG-DMEM complete medium as control. The prol iferation and osteogenic differentiation of the cells were observed and tested by the MTT assay, alkal ine phosphatase (ALP) stain, and collagen type I immunocytochemistry identification. The osteogenic induced BMSCs were inoculated in β tricalcium phosphate (β-TCP) biomaterial scaffold and cultured for 72 hours, then the β-TCP loaded with seed cells was implanted in the rabbit femur with 15 mm bone and periosteum defects. Fifty-four New Zealand white rabbits were randomly divided into three groups (n=18): sensory nerve bundle (group A) or motor nerve bundle (group B) were transplanted into the side groove of β-TCP scaffold, group C was used as a control without nerve bundle transplantation. X-ray detection was performed at the 4th, 8th, and 12th weeks after operation.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • Targeted muscle reinnervation: a surgical technique of human-machine interface for intelligent prosthesis

    Objective To review targeted muscle reinnervation (TMR) surgery for the construction of intelligent prosthetic human-machine interface, thus providing a new clinical intervention paradigm for the functional reconstruction of residual limbs in amputees. MethodsExtensively consulted relevant literature domestically and abroad and systematically expounded the surgical requirements of intelligent prosthetics, TMR operation plan, target population, prognosis, as well as the development and future of TMR. Results TMR facilitates intuitive control of intelligent prostheses in amputees by reconstructing the “brain-spinal cord-peripheral nerve-skeletal muscle” neurotransmission pathway and increasing the surface electromyographic signals required for pattern recognition. TMR surgery for different purposes is suitable for different target populations. Conclusion TMR surgery has been certified abroad as a transformative technology for improving prosthetic manipulation, and is expected to become a new clinical paradigm for 2 million amputees in China.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content