west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "PU Zaichun" 1 results
  • The risk prediction models for anastomotic leakage after esophagectomy: A systematic review and meta-analysis

    ObjectiveTo systematically evaluate the risk prediction models for anastomotic leakage (AL) in patients with esophageal cancer after surgery. MethodsA computer-based search of PubMed, EMbase, Web of Science, Cochrane Library, Chinese Medical Journal Full-text Database, VIP, Wanfang and CNKI was conducted to collect studies on postoperative AL risk prediction model for esophageal cancer from their inception to October 1st, 2023. PROBAST tool was employed to evaluate the bias risk and applicability of the model, and Stata 15 software was utilized for meta-analysis. ResultsA total of 19 literatures were included covering 25 AL risk prediction models and 7373 patients. The area under the receiver operating characteristic curve (AUC) was 0.67-0.960. Among them, 23 prediction models had a good prediction performance (AUC>0.7); 13 models were tested for calibration of the model; 1 model was externally validated, and 10 models were internally validated. Meta-analysis showed that hypoproteinemia (OR=9.362), postoperative pulmonary complications (OR=7.427), poor incision healing (OR=5.330), anastomosis type (OR=2.965), preoperative history of thoracoabdominal surgery (OR=3.181), preoperative diabetes mellitus (OR=2.445), preoperative cardiovascular disease (OR=3.260), preoperative neoadjuvant (OR=2.977), preoperative respiratory disease (OR=4.744), surgery method (OR=4.312), American Society of Anesthesiologists score (OR=2.424) were predictors for AL after esophageal cancer surgery. ConclusionAt present, the prediction model of AL risk in patients with esophageal cancer after surgery is in the development stage, and the overall research quality needs to be improved.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content