west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Pedicle screw" 40 results
  • ANATOMIC STUDY ON ENTRY POINT AND IMPLANT TECHNIQUE FOR C2 PEDICLE SCREW FIXATION

    ObjectiveTo determine the entry point and screw implant technique in posterior pedicle screw fixation by anatomical measurement of adult dry samples of the axis so as to provide a accurate anatomic foundation for clinical application. MethodsA total of 60 dry adult axis specimens were selected for pedicle screws fixation. The entry point was 1-2 mm lateral to the crossing point of two lines: a vertical line through the midpoint of distance from the junction of pedicle medial and lateral border to lateral mass, and a horizontal line through the junction between the lateral border of inferior articular process and the posterior branch of transverse process. The pedicle screw was inserted at the entry point. The measurement of the anatomic parameters included the height and width of pedicle, the maximum length of the screw path, the minimum distance from screw path to spinal canal and transverse foramen, and the angle of pedicle screw. The data above were provided to determine the surgical feasibility and screw safety. ResultsThe width of upper, middle, and lower parts of the pedicle was (7.35±0.89), (5.50±1.48), and (3.97±1.01) mm respectively. The pedicle height was (9.94±1.16) mm and maximum length of the screw path was (25.91±1.15) mm. The angle between pedicle screw and coronal plane was (26.95±1.88)° and the angle between pedicle screw and transverse plane was (22.81±1.61)°. The minimum distance from screw path to spinal canal and transverse foramen was (2.72±0.83) mm and (1.98±0.26) mm respectively. ConclusionAccording to the anatomic research, a safe entry point for C2 pedicle screw fixation is determined according to the midpoint of distance from the junction of pedicle medial and lateral border to lateral mass, as well as the junction between the lateral border of inferior articular process and the posterior branch of transverse process, which is confirmed to be effectively and safely performed using the entry point and screw angle of the present study.

    Release date:2016-08-25 10:18 Export PDF Favorites Scan
  • BIOMECHANICAL STRENGTH INFLUENCE OF LATERAL WALL VIOLATION ON SPINAL PEDICLE SCREW FIXATION

    ObjectiveTo compare the fixation strength of optimum placed pedicle screw (OS) with re-directionally correctly placed pedicle screw (RS) following a violation of lateral pedicle. MethodsThirty fresh lumbar vertebrae (L1-5) were obtained from 6 pigs weighing 95-105 kg, male or female. Each vertebra was instrumented with a monoaxial pedicle screw into each pedicle using two different techniques. On one side, a perfect screw path was created using direct visualization and fluoroscopy. A pedicle screw of 5 mm in diameter and 35 mm in length was placed with a digital torque driver (OS). On the other side, a lateral pedicle wall violation was created at the pedicle-vertebral body junction with a guide wire, a cannulated tap, and a pedicle probe. This path was then redirected into a correct position, developed, and instrumented with a 5-mm-diameter by 35-mm-long pedicle screw (RS). For each pedicle screw, the maximal torque, seating torque, screw loosening force, and post-loosening axial pullout were measured. Screw loosening and axial pullout were assessed using an MTS machine. ResultsMaximal insertion torque was (111.4±8.2) N·cm and (78.9±6.4) N·cm for OS and RS respectively, showing significant difference (Z=3.038, P=0.002). The seating torque was (86.3±7.7) N·cm and (59.7±5.3) N·cm for OS and RS respectively, showing significant difference (Z=2.802, P=0.005). The screw loosening force was (76.3±6.2) N and (53.0±5.8) N for OS and RS respectively, showing significant difference (Z=2.861, P=0.004). The post-loosening axial pullout force was (343.0±12.6) N and (287.0±10.5) N for OS and RS respectively, showing significant difference (Z=2.964, P=0.003). ConclusionCompared with OS, RS placement after a lateral wall violation shows significantly decreased maximal insertion torque, seating torque, screw loosening force, and post-loosening axial pullout. On this occasion, RS augmentation is a probable option for remediation.

    Release date:2016-08-25 10:18 Export PDF Favorites Scan
  • PROGRESS OF BONE CEMENT AUGMENTATION OF PEDICLE SCREW

    Objective To review the progress of the pedicle screw augmentation technique by bone cement. Methods Recent literature about the pedicle screw augmentation technique by bone cement was reviewed and analysed. The characters were summarized. Results Pedicle augmentation technique includes the augmentation of ordinary solid pedicle screw and hollow pedicle screw. Both types could increase the fixation strength and gain satisfactory clinical results. Bone cement leakage had a certain incidence rate, but most of cases were asymptom. Conclusion Bone cement augmentation of pedicle screw is an effective and safe internal fixation for poor bone condition.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • SHORT-TERM EFFECTIVENESS OF SPINAL NAVIGATION WITH INTRA-OPERATIVE THREE-DIMENSIONAL-IMAGING MODALITY IN PEDICLE SCREW FIXATION FOR CONGENITAL SCOLIOSIS

    Objective To investigate short-term effectiveness of spinal navigation with the intra-operative three-dimensional (3D)-imaging modality in pedicle screw fixation for congenital scoliosis (CS). Methods Between July 2010 and December 2011, 26 patients with CS were treated. Of 26 patients, 13 patients underwent pedicle screw fixation using the spinal navigation with the intra-operative 3D-imaging modality (navigation group), while 13 patients underwent the conventional technique with C-arm X-ray machine (control group). There was no significant difference in gender, age, hemivertebra number and location, major curve Cobb angle, and Risser grade between 2 groups (P gt; 0.05). Operation time, operative blood loss, frequency of the screw re-insertion, and postoperative complication were observed. The pedicle screw position was assessed by CT postoperatively with the Richter’s standard and the correction of Cobb angle was assessed by X-ray films. Results All patients underwent the surgery successfully without major neurovascular complication. There was no significant difference in operation time, operative blood loss, and pedicle screw location between 2 groups (P gt; 0.05). A total of 58 screws were inserted in navigation group, and 3 screws (5.2%) were re-inserted. A total of 60 screws were inserted in control group, and 10 screws (16.7%) were re-inserted. There was significant difference in the rate of pedicle screw re-insertion between 2 groups (χ2=3.975, P=0.046). Patients of navigation group were followed up 6-24 months, and 6-23 months in control group. According to Richter’s standard, the results were excellent in 52 screws and good in 6 screws in navigation group; the results were excellent in 51 screws, good in 5 screws, and poor in 4 screws in control group. Significant difference was found in the pedicle screw position between 2 groups (Z= — 1.992, P=0.046). The major curve Cobb angle of 2 groups at 1 week and last follow-up were significantly improved when compared with preoperative value (P lt; 0.05), but there was no significant difference between 1 week and last follow-up (P gt; 0.05). No significant difference in correction rate of the major curve Cobb angle was found between 2 groups at last follow-up (t=0.055, P=0.957). Conclusion Spinal navigation with the intra-operative 3D-imaging modality can improve the accuracy of pedicle screw implantation in patients with CS, and effectually reduce the rate of screw re-insertion, and the short-term effectiveness is satisfactory.

    Release date:2016-08-31 04:06 Export PDF Favorites Scan
  • EFFECTIVENESS OF POSTERIOR INTRASEGMENTAL FIXATION WITH PEDICLE SCREW-LAMINA HOOK SYSTEM IN TREATMENT OF LUMBAR SPONDYLOLYSIS

    Objective To investigate the effectiveness of posterior intrasegmental fixation with pedicle screw-lamina hook system and bone grafting for lumbar spondylolysis. Methods Between January 2005 and October 2009, 22 patients with lumbar spondylolysis underwent posterior intrasegmental fixation with pedicle screw-lamina hook system and bone grafting. There were 19 males and 3 females with an average age of 18.4 years (range, 12-26 years). The main symptom was low back pain with an average disease duration of 16 months (range, 8-56 months). The visual analogue scale (VAS) was 6.0 ± 1.2 and Oswestry disability index (ODI) was 72.0% ± 10.0% preoperatively. The X-ray films showed bilateral spondylolysis at L4 in 9 cases and at L5 in 13 cases. The range of motion (ROM) at upper and lower intervertebral spaces was (11.8 ± 2.8)°and (14.1 ± 1.9)°, respectively. ResultsAll incisions healed by first intention. All patients were followed up 12-45 months (mean, 25 months). Low back pain was significantly alleviated after operation. The VAS score (0.3 ± 0.5) and ODI (17.6% ± 3.4%) were significantly decreased at last follow-up when compared with preoperative scores (P lt; 0.05). CT showed bone graft fusion in the area of isthmus defects, with no loosening or breaking of internal fixator. At last follow-up, the lateral flexion-extension X-ray films of the lumbar spine showed that the ROM at upper and lower intervertebral spaces was (12.3 ± 2.1)°and (13.5 ± 1.7)°, respectively; showing significant differences when compared with preoperative values (P lt; 0.05). Pain at donor site of iliac bone occurred in 1 case, and was cured after pain release treatment. ConclusionThe posterior intrasegmental fixation with pedicle screw-lamina hook system and bone grafting is a reliable treatment for lumbar spondylolysis, having a high fusion rate, low complication rate, and maximum retention of lumbar ROM.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • POSTERIOR UNILATERAL PEDICLE SCREW FIXATION PLUS LUMBAR INTERBODY FUSION FOR TREATMENT OF DEGENERATIVE LUMBAR INSTABILITY

    Objective To evaluate the effectiveness of posterior unilateral pedicle screw fixation plus lumbar interbody fusion in treatment of degenerative lumbar instability. Methods Between February 2008 and December 2011, 33 patients with degenerative lumbar instability were treated with posterior unilateral pedicle screw fixation plus lumbar interbody fusion, including 14 cases of lumbar disc protrusion with instability, 15 cases of lumbar spinal stenosis with instability, 3 recurrent cases of lumbar disc protrusion at 1 year after discectomy, and 1 case of extreme lateral lumbar disc protrusion. There were 20 males and 13 females with an average age of 47.2 years (range, 39-75 years). The average disease duration was 12.8 months (range, 6-25 months). Single-segment-fixation was performed in 28 cases (L4, 5 in 21 cases, L5, S1 in 6 cases, and L5, 6 in 1 case), and double-segment-fixation was performed in 5 cases (L3, 4 and L4, 5). The clinical results were evaluated by using Oswestry disability index (ODI) and modified Japanese Orthopaedic Association (JOA) score for low back pain. Results Infection occurred in 1 case, and was cured after dressing change; primary healing was obtained in the other patients. Thirty-one patients were followed up 32.3 months on average (range, 15-53 months). Cage displacement occurred in 1 case who received bilateral pedicle screw fixation plus lumbar interbody fusion; no screw breaking, Cage displacement, or pseudoarthrosis was observed in the others. X-ray films showed bone fusion in the other patients except 1 case of bone fusion failure. ODI and JOA score at last follow-up were significantly improved when compared with the ones before operation and at 2 weeks after operation (P lt; 0.05); the improvement rates were 74.0% ± 10.1% and 83.6% ± 9.4%, respectively. Conclusion Posterior unilateral pedicle screw fixation plus lumbar interbody fusion is an effective and reliable method for patients with degenerative lumbar instability because it has the advantages of simple operation and less trauma.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • SECOND MEASUREMENT OF THREE-DIMENSIONAL CT RECONSTRUCTION DATA FOR SCOLIOSIS ORTHOPAEDIC SURGERY

    【Abstract】 Objective To explore the clinical application and outcomes of preoperative second measurement of three-dimensional (3-D) CT reconstruction data for scoliosis orthopedic surgery. Methods Between August 2006 and March 2008, 11 patients with severe rigid scoliosis received surgery treatment, including 4 males and 7 females with an average age of 17.2 years (range, 15-19 years). Preoperative second measurement of 3-D CT reconstruction data was conducted to guide the surgery, including the angle and width of pedicle, the entry point, and the choice of screws whose lengths and diameters were suitable. A total of 197 pedicle screws were implanted. The operation time, blood loss, postoperative nerve function,and Cobb’s angles at sagittal and coronal view were all recorded, and the postoperative CT scan was performed to assess the accuracy of pedicle screw insertion according to Andrew classification. Results Pedicle screws were implanted within 1-11 minutes (mean, 5.8 minutes), and the blood loss was 450-2 300 mL (mean, 1 520 mL). The postoperative X-ray films showed the correction rates of Cobb’s angle were 68.5% in coronal view and 55.5% in sagittal view. The accuracy of pedicle screw insertion was rated as grade I in 77 screws (39.1%),grade II in 116 screws (58.9%), and grade III in 4 screws (2.0%) according to postoperative CT scan. All 11 cases were followed up 14 months to 2 years without any complications. Conclusion Preoperative second measurement of 3-D CT reconstruction data can make the surgery process easy and accurate in treatment of severe scoliosis.

    Release date:2016-08-31 04:21 Export PDF Favorites Scan
  • CLINICAL SIGNIFICANCE OF THORACIC PEDICLE CLASSIFICATION BY INNER CORTICAL WIDTH OF PEDICLES ON CT IMAGES IN POSTERIOR VERTEBRAL COLUMN RESECTION FOR TREATMENT OF RIGID AND SEVERE SPINAL DEFORMITIES

    【Abstract】 Objective To investigate the clinical significances of the thoracic pedicle classification determined by inner cortical width of pedicle in posterior vertebral column resection (PVCR) with free hand technique for the treatment of rigid and severe spinal deformities. Methods Between October 2004 and July 2010, 56 patients with rigid and severe spinal deformities underwent PVCR. A total of 1 098 screws were inserted into thoracic pedicles at T2-12. The inner cortical width of the thoracic pedicle was measured and divided into 4 groups: group 1 (0-1.0 mm), group 2 (1.1-2.0 mm), group 3 (2.1-3.0 mm), and group 4 (gt; 3.1 mm). The success rate of screw-insertion into the thoracic pedicles was analyzed statistically. A new 3 groups was divided according to the statistical results and the success rate of screw-insertion into the thoracic pedicles was analyzed statistically again. And statistical analysis was performed between different types of thoracic pedicles classification for pedicle morphological method by Lenke. Results There were significant differences in the success rate of screw-insertion between the other groups (P lt; 0.008) except between group 3 and group 4 (χ2=2.540,P=0.111). The success rates of screw-insertion were 35.05% in group 1, 65.34% in group 2, and 88.32% in group 3, showing significant differences among 3 groups (P lt; 0.017). According to Lenke classification, the success rates of screw-insertion were 82.31% in type A, 83.40% in type B, 80.00% in type C, and 30.28% in type D, showing no significant differences (P gt; 0.008) among types A, B, and C except between type D and other 3 types (P lt; 0.008). In the present study, regarding the distribution of different types of thoracic pedicles, types I, II a, and II b thoracic pedicles accounted for 17.67%, 16.03%, and 66.30% of the total thoracic pedicles, respectively. The type I, II a, and II b thoracicpedicles at the concave side accounted for 24.59%, 21.13%, and 54.28%, and at the convex side accounted for 10.75%, 10.93%, and 78.32%, respectively. Conclusion A quantification classification standard of thoracic pedicles is presented according to the inner cortical width of the pedicle on CT imaging: type I thoracic pedicle, an absent channel with an inner cortical width of 0-1.0 mm; type II thoracic pedicle, a channel, including type IIa thoracic pedicle with an inner cortical width of 1.1-2.0 mm, and type IIb thoracic pedicle with an inner cortical width more than 2.1 mm. The thoracic pedicle classification method has high prediction accuracy of screw-insertion when PVCR is performed.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • CLINICAL APPLICATION OF PEDICLE SCREW FIXATION UNDER GUIDANCE OF COMPUTER ASSISTEDNAVIGATION IN PATIENTS WITH OSTEOPOROSIS

    【Abstract】 Objective To study the effectiveness of computer assisted pedicle screw insertion in osteoporotic spinalposterior fixation. Methods Between December 2009 and March 2011, 51 patients underwent pedicle screw fixation using the computer assisted navigation (navigation group), while 41 patients underwent the conventional technique (traditional group). All patients had osteoporosis under the dual-energy X-rays absorptiometry. There was no significant difference in age, gender, bone mineral density, involved segment, preoperative complications, and other general status between 2 groups (P gt; 0.05). The amount of blood loss, the operation time, the rate of the pedicle screw re-insertion, and the postoperative complication were observed. The state of the pedicle screw location was assessed by CT postoperatively with the Richter’s classification and the fusion state of the bone graft was observed using three-dimensional (3-D) CT scans during follow-up. Results A total of 250 screws were inserted in navigation group, and 239 were inserted successfully at first time while the other 11 screws (4.4%) were re-inserted. A total of 213 screws were inserted in traditional group, and 190 were successful at first time while 23 screws (10.8%) were re-inserted. There was significant difference in the rate of screws re-insertion between 2 groups (χ2=6.919, P=0.009). Both the amount of blood loss and the operation time in navigation group were significantly less than those in traditional group (P lt; 0.05). According to Richter’s classification for screw location, the results were excellent in 240 screws, good in 10 screws innavigation group; the results were excellent in 191 screws, good in 21 screws, and poor in 1 screw in traditional group. Significant difference was noticed in the screw position between 2 groups (χ2=7.566, P=0.023). The patients were followed up (7.8 ± 1.5) months in navigation group and (8.7 ± 1.5) months in traditional group. No loosening, extraction, and breakage of the pedicle screw occurred in navigation group, and all these patients had successful fusion within 6 months postoperatively. While in traditional group, successful fusion was shown in the other patients by 3-D CT, except the absorption of bone graft was found in only 1 patient at 6 months after operation. And then, after braking by adequate brace and enhancing the anti-osteoporotic therapy, the bone graft fused at 9 months postoperatively. Conclusion The computer assisted navigating pedicle screw insertion could effective reduce the deviation or re-insertion of the screws, insuring the maximum stabil ity of each screw, mean while it can reduce the exposure time and blood loss, avoiding complication. The computer assisted navigation would be a useful technique which made the pedicle screw fixation more safe and stable in patients with osteoporosis.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • RESEARCH ADVANCEMENT OF THREE-DIMENSIONAL CORRECTION TECHNIQUES OF IDIOPATHIC SCOLIOSIS

    Objective To elucidate the new development and effects of three-dimensional correction techniques of idiopathic scol iosis (IS). Methods The related home and abroad l iterature concerning three-dimensional correction techniques of IS was extensively reviewed. Results With more and more attention to three-dimensional correction of IS, all kinds of surgery and developed techniques of correction are applied to the correction of IS. The effects of three-dimensional correction of IS are satisfied. Conclusion With more knowledge about IS and more developed theory of correction, more safe and effective techniques of correction is therefore the hot spot for future study.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content