Objective To employ spinal virtual surgery system (SVSS) for preoperative planning of thoracolumbar pedicle screw fixation, and to establ ish the measurement method for pedicle screw-related parameters. Methods Eight thoracicand lumbar spine specimens (T11-L3) were selected. First of all, SVSS was used for the preoperative planning of pedicle screw and the parameters of both sides of pedicle were measured in every vertebral segment, including angle of axial view (Aa), angle of sagittal view (As), x-direction entrance (XE), total pedicle length of axial view (TLa), total pedicle length of sagittal view (TLs), pedicle height (PH), pedicle width (PW), and pedicle spongy width (PSW). Then the corresponding parameters of the right and left pedicle screws of the specimens were measured actually. Finally, its accuracy was verified by comparing the data by virtual measurement and actual measurement. Results There was no significant difference in the parameters of virtual measurement (Aa, As, TLa, TLs, XE, PW, PSW, and PH) and actual measurement (Aa, As, TLa, XE, PW, PSW, and PH) between the right and left sides (P gt; 0.05). Except XE of the L3 vertebral segment and PSW of T11 and T12 vertebral segments (P lt; 0.05), the differences in other parameters of other segments were not significant (P gt; 0.05). Conclusion After statistical analysis and comparison, the feasibil ity of preoperative planning of thoracolumbar pedicle screw fixation and the accuracy of the measurement of the SVSS is verified.
Objective To assess the cl inical significance of transpedicular screw insertion in lower cervical vertebra assisted by multi-spiral CT (MSCT) three dimentional (3D) image reconstruction techniques. Methods Eight cervical vertebra specimens were examined by MSCT, and the messages were sent to SGI02 Workstation; according to the parameter requirements of lower cervical pedicle fixation, by using post-process of volume rendering (VR) the condition was judged and multi-plannar reformation (MPR) was used to do individual analysis; and the ideal path of screw insertion was obtained andthe related parameters were measured. After preoperative plan being finished, referring to these measured parameters, 3.5 mm screws were inserted into C3-7 pedicles of these 8 specimens. After insertion of screws, MSCT scanning and 3D reconstruction were performed again to evaluate the accuracy of lower cervical pedicle screw inserting. From May 2007 to November 2009, 28 patients who received screw insertion in lower cervical spines were given MSCT scanning and 3D reconstruction to evaluate the illness situation, to confirm shortest fixation volumes, and to collect the parameters of aim pedicle screw insertion. Results The time of insertion for each screw was (392 ± 62) seconds. It was found that one pedicle was clausura (1.25%, 1/80) and five pedicle diameters in coronal view were less than 3 mm (6.25%, 5/80), which all were not fit for screw insertion. A total of 74 screws were placed successfully. One-time success rate of screw insertion was 95.95% (71/74). The total accuracy rate was 91.89% (68/74). Six screws penetrated (8.11%). According to the Richter penetrating classification: grade one was 6.76% (5/74) and grade two was 1.35% (1/74). There were significant differences (P lt; 0.05) in penetrated rate between our study and anatomic landmark local ization (47.37%), Miller methods (25.00%), and there was no significant difference (P gt; 0.05) when compared with Abumi method (6.70%), hopper method (7.10%), pipel ine deoppilation method (5.20%) and navigation technique (11.30%). In cl inical 28 cases, 121 screws were inserted; one pedicle was clausura and one was fissure fracture, which all were unfit for insert screw in preoperative plan, the surgery project was adjusted. After operation, 17 patients (76 screws) were given MSCT scanning again. A total of 67 screws (88.16%) were placed successfully. Nine screws (11.84%) penetrated, grade one was 7.89% (6/76) and grade two was 3.95% (3/76). Conclusion It is accurate to apply MSCT 3D reconstruction techniques to measure the ideal screw canal in preoperative individual ized plan. Strictly following individual quantitative data, the safety and accuracy of the surgery can be improved. And it is feasible and available to use MSCT MPR imaging to evaluate the accuracy of pedicle screw insertion.
Objective To assess the outcomes of pedicle subtration osteotomy and short-segment pedicle screw internal fixation in kyphosisdeformity. Methods From June 2001 to November 2003, 16 cases of kyphosis deformity were treated with pedicle subtration osteotomy and short-segment pedicle screw internal fixation, including 11 males and 5 females and aging 24-51 years. The kyphosis deformity was caused by ankylosing spondylitis in 12 cases, old lumbothoracic fracturedislocation in 2 cases, and vertebral dysplasia in 2 cases. The disease course was 7-25 years with an average of 12.8years. The whole spine radiographs were taken pre-and postoperatively. The sagittal balance was assessed by measuring thoracic kyphosis angle, lumbar lordosis angle, acrohorizontal angle and distance between posterosuperior point of S1and the vertical line. The clinical outcomes were assessed by Bridwell-Dewald scale for spinal disorders. Results The mean follow-up period was25.6 months. The mean bleeding was 1 100 ml. Satisfactory bone graft healing was achieved at final follow-up. Complications were paralytic intestinal obstruction in 1 case, dura laceration in 1 case, and temporary lower limb paralysis in 2 cases. Final follow-up radiograph showed an increase in lumbar lordosis angle from 9.6±16.4° to 42.6±14.3°(P<0.05), whereas thoracic kyphosis angle remained relative stable. The distance between posterosuperior point of S1 and the vertical line was decreased from 97.5±45.6 mm to 10.7±9.6 mm(P<0.05). Satisfactory clinical outcome was achieved by evaluating the changes of pain, social and working status. Conclusion Pedicle subtraction osteotomy and short-segment pedicle screw internal fixation is effective for correction of kyphosis deformity.