Objective To study the effects of advanced glycation end (AGEs) products induced by bovine serum albumin (BSA) on the survival and the morphology of bovine retinal endothelial cells (BREC) and pericytes (BRP). Methods BSA with the final concentration of 50 mg/ml was incubated in PBS, containing 500 mmol/L D-glucose, for 12 weeks under 37℃. AGEs-BSA was purified by Sephacryl S-300 column chromatography and was confirmed by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The concentration of AGEs-BSA was determined by the method of commassie protein assay. In order to detect the toxic effects of AGEs-BSA on cultured BREC and BRP, groups of AGEs-BSA and BSA with different concentration and untreated control were set up. Phase contrast microscope was used to observe the effect of AGEs-BSA and BSA (with the concentration of 500mu;g/ml and actuation duration of 48 hours) on morphology of BREC and BRP. Results As the dosage of AGEs-BSA increased, the number of inhibited cells increased. When the concentration of AGEs-BSA was 500mu;g/ml, the inhibited BREC in AGEs-BSA group was (72.8plusmn;15.9)% of which in untreated control group, and the inhibited BRP was (64.8plusmn;9) % of which in untreated control group. AGEs-BSA with low concentration promoted the proliferation of endothelial cells, but there was no significant difference between AGEs-BSA and the control group (P=0.231). Inhibited proliferation and abnormal morphology were seen under the phase contrast microscope while the normal morphology of cells was found in BSA and control group. Conclusion AGEs-BSA with the high concentration may inhibit the growth of both BREC and BRP, which leads the loss of BRP and damage of vascular function. These results suggest that nonenzymatic glycosylation plays a major role in diabetic complications. (Chin J Ocul Fundus Dis, 2006, 22: 11-15)
Objective To investigate the effects of advanced glycation endproducts (AGEs) on proliferation of pericytes of bovine retinal capillary vessels and expression of transforming growth factor beta;(TGF-beta;). Methods The proliferation of pericytes detected by methyl thiazolyl tetrazolium (MTT) colorimetric assay, cellular cycle of pericytes was analyzed by flow cytometry was used to analyze cell, and TGF-beta; protein expression of pericytes was observed by immunofluorescent staining. Results AGEs inhibited the proliferation of pericytes of bovine retinal capillary vessels, stopped the cellular cycle of pericytes in synthesis phase (S phase), increased the number of apoptotic cells obviously (Plt;0.01), and promoted the expression of TGF-beta; proteinof perycytes. Conclusions AGEs may promote the apoptosis of pericytes by inhibiting the proliferation of pericytes to lead the decrease of pericytes number, and may accelerate diabetic retinopathy by promoting the expression of TGF-beta; protein of pericytes. (Chin J Ocul Fundus Dis, 2006, 22: 20-23)
Objective To probe a selective cultural method for bovine retinal endothelial cells (BREC) and pericytes (BRP) in vitro.Methods With the isolation of active retinal blood vessels, BREC were cultured in a fibronectin coated substrate and Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% human serum and 100μg/ml heparin, while homogeneous cultures of retinal pericytes were obtained when isolated microvessels were seeded to uncoated dishes and grown in DMEM supplemented with 20% fetal bovine serum. BREC were identified by acetylated-low density lipoprotein (Dil-Ac-LDL) incorporation and immunohistochemical method of Von Willebrand factor, while BRP were identified by the immunohist ochemical method of α-isoform of smooth-muscle actin. Results The purity of selectively cultured BREC and BRP was more than 98%, being reproducible. BREC got together around the microvessel fragments with the small-cyprinoid-like configuration at first,and could phagocytize Dil-Ac-LDL with the expression of fluorescence in cytoplasm. The expressions of Von Wllebrand factor and α-isoform of smooth-muscle actin were positive and negative in BREC respectively, while were negative and positive in BRP respectively.Conclusion BREC and BRP with high purity can be obtained by using selective culture and coated-dishes respectively which are simple and repeatable methods. (Chin J Ocul Fundus Dis,2004,20:23-26)
Objective To investigate the effect of advanced glycation end products (AGEs) on the catalase activity and the levels of malondialdehyde in cultured bovine retinal capillary pericytes (BRPs), and to investigate the relationship between oxidative stress and diabetic retinopathy. Methods Cultured BRPs were exposed to AGEs (0, 8, 32, 125, 500, 2 000 μg/ml) for four days. Activity and the levels of catalase and malondialdehyde in cultured BRPs were examined by spectrophotometry. Results AGEs decreased the catalase activity, whereas increased the levels of malondialdehyde of cultured BRPs in a dose-dependent manner (r=-0.714, r=0.748, P<0.01).There were significant differences between BRPs cultured in 32 μg/ml AGEs and in control group (P<0.01), while no significant differences between BRPs cultured in non-glycated bovine serum albumin and absence of bovine serum albumin were found. Conclusion Oxidative stress may be one of the reasons why the pericyte disappears in diabetic retinopathy. (Chin J Ocul Fundus Dis, 2002, 18: 143-145)
Objective To investigate the protective effect of aminoguanidine(AG),silymarin (Sil) and anisodamine (Ani) on retinal capillary pericytes cultured in glycosylation products. Methods MTT cololrimetric assay, [3H] thymidine incorporating and fluorescent indicat or fura-2 acetoxy-methyl ester (Fura-2AM) were used to study the influence of AG,Sil and Ani on the growth,DNA synthesis,and cytosolic free calcium ([Ca2 ]i)changes of pericytes cultured in the medium contained early glycation products (EGs) or advanced glycation end products (AGEs). Results Cultured in the medium contained EGs,the A value by MTT assayed and amount of [3H] thymidine incorporating in AG group and Sil group were obviously elevated than those of control group(Plt;0.01);but the [Ca2 ]iconcentration in both groups were decreased significantly comparing with control group(Plt;0.01 and 0.05).Under the condition of AEGs,only AG group was distinctly increased on the A value and amount of [3H] thymidine incorporatin g (Plt;0.01),and [Ca2 ]i concentration was markedly decreased (Plt;0.05) comparing with control group. Conclusion AG has the portective effect on pericytes against the proliferative inhibition and excessive elevation of [Ca2 ]i concentration in cytosol which are induced both by EGs or AGEs.Silymarin has the effect for those only by Egs-induced.Ani has no protective effect no pericytes nei ther cultured in medium with EGs nor with AGEs. (Chin J Ocul Fundus Dis, 2001,17:192-194)
Intravitreal injection of anti-VEGF drugs has gradually become the first-line treatment for diabetic retinopathy (DR). However, diabetic macular edema (DME) caused by DR blood-retinal barrier damage is less sensitive to anti-VEGF drugs.Therefore, it is necessary to find supplementary drugs or alternative drugs that can effectively protect the structure of the blood vessel wall. Melatonin is a hormone mainly secreted by the pineal gland, which can play a number of functions in the human body such as regulating biological rhythms, scavenging free radicals, and anti-inflammatory. In recent years, studies have shown that melatonin can improve neuronal degeneration and protect blood vessel structure through multiple mechanisms in retinopathy. In terms of its protective effect on the retinal capillary structure, melatonin can improve the damage of early DR endothelial cells and pericytes through anti-oxidative stress, anti-inflammatory, and inhibiting cell apoptosis so as to protect the integrity of the blood-retinal barrier structure. It suggests that melatonin may provide new ideas for the prevention and treatment of DR, especially with DME.
ObjectiveTo observe the effects of overexpression of S100A4 protein on retinal capillary cells and retinal ganglion cells (RGC) after retinal ischemia-reperfusion injury (RIRI). MethodsOne hundred healthy adult male C57BL/6 mice were randomly divided into normal control group (group C), RIRI group, adeno-associated virus (AAV2)-S100A4 green fluorescent protein (GFP) intravitreal injection group (group S), RIRI+AAV2-GFP intravitreal injection group (group GIR), and RIRI+AAV2-S100A4-GFP intravitreal injection group (group SIR), with 20 mice in each group. The RIRI model was established using the high intraocular pressure anterior chamber method in the RIRI, GIR and SIR groups of mice. Eyes were enucleated 3 days after modelling by over anaesthesia. The number of retinal capillary endothelial cells and pericytes in the retinal capillaries of mice in each group was observed by retinal trypsinised sections and hematoxylin-eosin and periodic acid-Schiff staining; immunofluorescence staining was used to observe endothelial cell, pericyte coverage and RGC survival; The relative expression of Toll-like receptor 4 (TLR4), p38 MAPK and nuclear factor erythroid 2-related factor 2 (NRF2) in retinal tissues was measured by Western blot. One-way analysis of variance was used to compare data between groups. ResultsThree days after modeling, the endothelial cell to pericyte ratio in group C was compared with group S and SIR, and the difference was not statistically significant (F=106.30, P>0.05); the SIR group was compared with group RIRI and GIR, and the difference was statistically significant (F=106.30, P<0.000 1). Comparison of endothelial cell coverage in each group, the difference was not statistically significant (F=3.44, P>0.05); compared with the pericyte coverage in group C, the RIRI group and the GIR group were significantly lower, and the difference was statistically significant (F=62.69, P<0.001). Compared with the RGC survival rate in group C, it was significantly lower in RIRI and GIR groups, and the difference was statistically significant (F=171.60, P<0.000 1); compared with RIRI and GIR groups, the RGC survival rate in SIR group was significantly higher, and the difference was statistically significant (F=171.60, P<0.000 1). The relative expression levels of TLR4, p38 and NRF2 proteins were statistically significant among all groups (F=42.65, 20.78, 11.55; P<0.05). ConclusionsPericytes are more sensitive to ischemia than endothelial cells after retinal RIRI in mice, and early vascular cell loss is dominated by pericytes rather than endothelial cells. The overexpression of S100A4 protein protects against loss of pericytes and RGC after RIRI by inhibiting the TLR4/p38/NRF2 signaling pathway.
Objective To study the differentially expressed genes (DEG) during the differentiation of human induced pluripotent stem cells (hiPSC) and human embryonic stem cells (hESC) into pericytes and endothelial cells, and to identify key molecules and signaling pathways that may regulate this differentiation process. MethodshiPSC and hESC were selected and expanded using mTeSR medium. A "two-step method" was used to induce the differentiation of hiPSC and hESC into pericytes and endothelial cells. Pericytes were identified using immunofluorescence staining, while endothelial cells were isolated and identified using flow cytometry. Total RNA samples were extracted on days 0, 4, 7, and 10 of differentiation and consistently significant DEGs were screened. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis were performed on the screened DEGs. ResultsBoth hiPSCs and hESCs successfully differentiated into pericytes and endothelial cells under induction conditions. Transcriptome sequencing results showed that with the extension of differentiation time, the DEGs in hiPSCs and hESCs were significantly upregulated or downregulated, following a generally consistent trend. During the differentiation process, marker genes for pericytes and endothelial cells were significantly upregulated. A total of 491 persistent DEGs were detected in both hiPSC and hESC, with 164 unique to hiPSCs and 335 to hESCs, while 8 DEGs were co-expressed in both cell lines. Among these, SLC30A3, LCK, TNFRSF8, PRDM14, and GLB1L3 showed sustained downregulation, whereas CLEC18C, CLEC18B, and F2RL2 exhibited sustained upregulation. GO enrichment analysis revealed that DEGs with sustained upregulation were primarily enriched in terms related to neurogenesis, differentiation, and developmental proteins, while DEGs with sustained downregulation were enriched in terms related to membrane structure and phospholipid metabolic processes. KEGG pathway analysis showed that upregulated genes were primarily enriched in cancer-related pathways, pluripotency regulatory pathways, the Wnt signaling pathway, and the Hippo signaling pathway, whereas downregulated genes were predominantly enriched in metabolism-related pathways. ConclusionsDuring the differentiation of hiPSC and hESC into pericytes and endothelial cells, 8 DEGs exhibit sustained specific expression changes. These changes may promote pericyte and endothelial cell differentiation by activating the Wnt and Hippo pathways, inhibiting metabolic pathways, releasing the maintenance of stem cell pluripotency, affecting the cell cycle, and inhibiting cell proliferation.