Objective To investigate the feasibil ity of preparing the porous extracellular matrix (ECM) by use of some chemicals and enzymes to decellularize the porcine carotid artery. Methods The porcine carotid artery was procured, and warm ischemia time was less than 30 minunts. The porcine carotid artery was decellularized with 1% sodium dodecyl sulfate (SDS) for 60 hours to prepare common ECM; then common ECM was treated with 0.25% trypsin (for 6 hours) and 0.3 U/ mL collagenase (for 24 hours) to prepare porous ECM. The common ECM and porous ECM were stained with HE,Masson’s trichrome, and Orcein to evaluate the histological features. Then the mechanical property, cytotoxicity, and pore size of ECMs were determined. After 4 weeks of subcutaneous implantation in dogs, the histological examination was used for the study. Results Histological observation confirmed that 2 kinds of ECMs were decellularized completely and more porous structure was observed in porous ECM. Scanning electron microscope showed the pores in porous ECM were greater and the length of shorter axis in porous ECM ranged from 5 to 30 μm, the length of longer axis from 40 to 100 μm. The porosity of porous ECM (99.25%) was greater than that of common ECM (91.50%). The burst pressure of porous ECM decreased when compared with common ECM, showing significant difference [(0.154 3 ± 0.012 7) MPa vs [0.305 2 ± 0.015 7) MPa, P lt; 0.05]. There was no significant difference in suture retention strength between 2 kinds of ECMs (P gt; 0.05). The cytotoxicity test showed no obvious cytotoxicity in 2 kinds of ECMs. In vivo implantation test showed that the deeper host cells infiltration and more neo-microvessels in porous ECM were observed than in common ECM. Conclusion SDS and some enzymes can be used to prepare porous ECM as the scaffold for tissue engineered blood vessels.
ObjectiveTo summarize the research progress of several three-dimensional (3-D) printing scaffold materials in bone tissue engineering. MethodThe recent domestic and international articles about 3-D printing scaffold materials were reviewed and summarized. ResultsCompared with conventional manufacturing methods, 3-D printing has distinctive advantages, such as enhancing the controllability of the structure and increasing the productivity. In addition to the traditional metal and ceramic scaffolds, 3-D printing scaffolds carrying seeding cells and tissue factors as well as scaffolds filling particular drugs for special need have been paid more and more attention. ConclusionsThe development of 3-D printing porous scaffolds have revealed new perspectives in bone repairing. But it is still at the initial stage, more basic and clinical researches are still needed.
Triply periodic minimal surface (TPMS) is widely used because it can be used to control the shape of porous scaffolds precisely by formula. In this paper, an I-wrapped package (I-WP) type porous scaffolds were constructed. The finite element method was used to study the relationship between the wall thickness and period, the morphology and mechanical properties of the scaffolds, as well as to study the compression and fluid properties. It was found that the porosity of I-WP type scaffolds with different wall thicknesses (0.1 ~ 0.2 mm) and periods (I-WP 1 ~ I-WP 5) ranged from 68.01% ~ 96.48%, and the equivalent elastic modulus ranged from 0.655 ~ 18.602 GPa; the stress distribution of the scaffolds tended to be uniform with the increase of periods and wall thicknesses; the equivalent elastic modulus of the I-WP type scaffolds was basically unchanged after the topology optimization, and the permeability was improved by 52.3%. In conclusion, for the I-WP type scaffolds, the period parameter can be adjusted first, then the wall thickness parameter can be controlled. Topology optimization can be combined to meet the design requirements. The I-WP scaffolds constructed in this paper have good mechanical properties and meet the requirements of repairing human bone tissue, which may provide a new choice for the design of artificial bone trabecular scaffolds.