ObjectiveTo construct and verify the nomogram prediction model of pregnant women's fear of childbirth. MethodsA convenient sampling method was used to select 675 pregnant women in tertiary hospital in Tangshan City, Hebei Province from July to September 2022 as the modeling group, and 290 pregnant women in secondary hospital in Tangshan City from October to December 2022 as the verification group. The risk factors were determined by logistic regression analysis, and the nomogram was drawn by R 4.1.2 software. ResultsSix predictors were entered into the model: prenatal education, education level, depression, pregnancy complications, anxiety and preference for delivery mode. The areas under the ROC curves of the modeling group and the verification group were 0.834 and 0.806, respectively. The optimal critical values were 0.113 and 0.200, respectively, with sensitivities of 67.2% and 77.1%, the specificities were 87.3% and 74.0%, and the Jordan indices were 0.545 and 0.511, respectively. The calibration charts of the modeling group and the verification group showed that the coincidence degree between the actual curve and the ideal curve was good. The results of Hosmer-Lemeshow goodness of fit test were χ2=6.541 (P=0.685) and χ2=5.797 (P=0.760), and Brier scores were 0.096 and 0.117, respectively. DCA in modeling group and verification group showed that when the threshold probability of fear of childbirth were 0.00 to 0.70 and 0.00 to 0.70, it had clinical practical value. ConclusionThe nomogram model has good discrimination, calibration and clinical applicability, which can effectively predict the risk of pregnant women's fear of childbirth and provide references for early clinical identification of high-risk pregnant women and targeted intervention.
ObjectivesTo explore the construction method of prediction model of absolute risk for breast cancer and provide personalized breast cancer management strategies based on the results.MethodsA case-control design was conducted with 2 747 individuals diagnosed as primary breast cancer by pathology in West China Hospital of Sichuan University from 2000 to 2017 and 6 307 healthy controls from Breast Cancer Screening Cohort in Sichuan Women and Children Center and Chengdu Shuangliu District Maternal and Child Health Hospital. Standardized questionnaires and information management systems in hospital were used to collect information. Decision trees, logistic regression, the formula in Gail model and registration data in China were used to estimate the probability of 5-year risk of breast cancer. Eventually a ROC (receiver operating characteristics) curve was drawn to identify optimal cut-off value, and the power was evaluated.ResultsThe decision tree exported 4 variables, which were urban or rural sources, number of live birth, age and age at menarche. The median 5-year risk and interquartile range of the controls was 0.027% and 0.137%, while the median 5-year risk and interquartile range of the cases was 0.219% and 0.256%. The ROC curve showed the cut-off value was 0.100%. Through verification, the sensitivity was 0.79, the specificity was 0.73, the accuracy was 0.75, and the AUC (area under the curve) was 0.79.ConclusionsThe methods used in our study based on 9 054 female individuals in Sichuan province could be used to predict the 5-year risk for breast cancer. Predictor variables include urban or rural sources, number of live birth, age, and age at menarche. If the 5-year risk is more than 0.100%, the person will be judged as a high risk individual.
As precision medicine continues to gain momentum, the number of predictive model studies is increasing. However, the quality of the methodology and reporting varies greatly, which limits the promotion and application of these models in clinical practice. Systematic reviews of prediction models draw conclusions by summarizing and evaluating the performance of such models in different settings and populations, thus promoting their application in practice. Although the number of systematic reviews of predictive model studies has increased in recent years, the methods used are still not standardized and the quality varies greatly. In this paper, we combine the latest advances in methodologies both domestically and abroad, and summarize the production methods and processes of a systematic review of prediction models. The aim of this study is to provide references for domestic scholars to produce systematic reviews of prediction models.
ObjectiveTo construct a prediction model of diabetics distal symmetric polyneuropathy (DSPN) based on neural network algorithm and the characteristic data of traditional Chinese medicine and Western medicine. MethodsFrom the inpatients with diabetes in the First Affiliated Hospital of Anhui University of Chinese Medicine from 2017 to 2022, 4 071 cases with complete data were selected. The early warning model of DSPN was established by using neural network, and 49 indicators including general epidemiological data, laboratory examination, signs and symptoms of traditional Chinese medicine were included to analyze the potential risk factors of DSPN, and the weight values of variable features were sorted. Validation was performed using ten-fold crossover, and the model was measured by accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC value. ResultsThe mean duration of diabetes in the DSPN group was about 4 years longer than that in the non-DSPN group (P<0.001). Compared with non-DSPN patients, DSPN patients had a significantly higher proportion of Chinese medicine symptoms and signs such as numbness of limb, limb pain, dizziness and palpitations, fatigue, thirst with desire to drink, dry mouth and throat, blurred vision, frequent urination, slow reaction, dull complexion, purple tongue, thready pulse and hesitant pulse (P<0.001). In this study, the DSPN neural network prediction model was established by integrating traditional Chinese and Western medicine feature data. The AUC of the model was 0.945 3, the accuracy was 87.68%, the sensitivity was 73.9%, the specificity was 92.7%, the positive predictive value was 78.7%, and the negative predictive value was 90.72%. ConclusionThe fusion of Chinese and Western medicine characteristic data has great clinical value for early diagnosis, and the established model has high accuracy and diagnostic efficacy, which can provide practical tools for DSPN screening and diagnosis in diabetic population.
ObjectiveConstructing a prediction model for seizures after stroke, and exploring the risk factors that lead to seizures after stroke. MethodsA retrospective analysis was conducted on 1 741 patients with stroke admitted to People's Hospital of Zhongjiang from July 2020 to September 2022 who met the inclusion and exclusion criteria. These patients were followed up for one year after the occurrence of stroke to observe whether they experienced seizures. Patient data such as gender, age, diagnosis, National Institute of Health Stroke Scale (NIHSS) score, Activity of daily living (ADL) score, laboratory tests, and imaging examination data were recorded. Taking the occurrence of seizures as the outcome, an analysis was conducted on the above data. The Least absolute shrinkage and selection operator (LASSO) regression analysis was used to screen predictive variables, and multivariate Logistic regression analysis was performed. Subsequently, the data were randomly divided into a training set and a validation set in a 7:3 ratio. Construct prediction model, calculate the C-index, draw nomogram, calibration plot, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) to evaluate the model's performance and clinical application value. ResultsThrough LASSO regression, nine non-zero coefficient predictive variables were identified: NIHSS score, homocysteine (Hcy), aspartate aminotransferase (AST), platelet count, hyperuricemia, hyponatremia, frontal lobe lesions, temporal lobe lesions, and pons lesions. Multivariate logistic regression analysis revealed that NIHSS score, Hcy, hyperuricemia, hyponatremia, and pons lesions were positively correlated with seizures after stroke, while AST and platelet count were negatively correlated with seizures after stroke. A nomogram for predicting seizures after stroke was established. The C-index of the training set and validation set were 0.854 [95%CI (0.841, 0.947)] and 0.838 [95%CI (0.800, 0.988)], respectively. The areas under the ROC curves were 0.842 [95%CI (0.777, 0.899)] and 0.829 [95%CI (0.694, 0.936)] respectively. Conclusion These nine variables can be used to predict seizures after stroke, and they provide new insights into its risk factors.
ObjectiveTo observe the relationship between ventilator-associated pneumonia (VAP) and changes in bronchial mucosa and sputum in critically ill patients. A prediction model for SEH score was developed according to the abnormal degrees of airway sputum , mucosal edema and mucosal hyperemia , as well as to analyze the diagnostic value of the SEH scores for VAP during bronchoscopy. MethodsA collection of general data and initial bronchoscopy results was conducted for patients admitted to the department of intensive care unit at West China Hospital from March 1, 2024, to July 1, 2024. Patients were divided into infection group (n=138) and non-infection group (n=227) according to diagnostic criteria for VAP based on the date of their first bronchoscopy. T-tests were used to compare baseline data between groups, while analysis of variance was employed to assess differences in airway mucosal and sputum lesions. A binary logistic regression model was constructed using the SEH scores for predicting VAP risk, with receiver operating characteristic curve area under the curve (AUC) utilized to evaluate model accuracy. ResultsA total of 365 patients were included in this study, among which 138 cases (37.8%) were diagnosed with VAP. The AUC for using SEH scores in diagnosing VAP was found to be 0.81 [95% confidence interval (CI) 0.76-0.85], with an optimal cutoff value set at 6.5. The sensitivity and specificity of SEH scores for diagnosing VAP were determined as 79.7% (95% CI: 72.2%-85.6%) and 73.1% (95% CI:67.0%-78.5%). Patients with SEH scores over 6.5 exhibited a significantly higher rate of VAP infection (64.3% vs.14.4%, P<0.0001), elevated white blood cell count levels (WBC) [(13.3±7.5 vs.1.8±6.2), P=0.04], as well as increased hospital mortality rates (39.8 % vs.24.2 %, P=0.002). ConclusionsThe SEH scores has a certain efficacy in the diagnosis of VAP in patients with mechanical ventilation. Compared with the traditional VAP diagnostic criteria, SEH scores is easier to obtain in clinical practice, and has certain clinical application value.
ObjectiveTo establish a hypertension prediction model for middle-aged and elderly people in China and to use the basic public health service database for performance validation. MethodsThe literature related to hypertension was retrieved from the internet. Using meta-analysis to assess the effect value of influencing factors. Statistically significant factors, which were also combined in the database, were extracted as the predictors of the models. The predictors’ effect values were logarithmarithm-transformed as the parameters of the Logit function model and the risk score model. Participants who were never diagnosed with hypertension at the physical examination of health service project of Hongguang Town Health Center in Pidu District of Chengdu from January 1, 2017, to January 1, 2022, were considered as the external validation group. ResultsA total of 15 original studies were involved in the meta-analysis and 11 statistically significant influencing factors for hypertension were identified, including age, female, systolic blood pressure, diastolic blood pressure, BMI, central obesity, triglyceride, smoking, drinking, history of diabetes and family history of hypertension. Of 4997 qualified participants, 684 individuals were identified with hypertension during the five-years follow-up. External validation indicated an AUC of 0.571 for the Logit function model and an AUC of 0.657 for the risk score model. ConclusionIn this study, we developed two different prediction models based on the results of meta-analysis. National basic public health service database is used to verify the models. The risk score model has a better prediction performance, which may help quickly stratify the risk class of the community crowd and strengthen the primary-level assistance system.
Objective To systematically review prediction models of small for gestational age (SGA) based on machine learning and provide references for the construction and optimization of such a prediction model. Methods The PubMed, EMbase, Web of Science, CBM, WanFang Data, VIP and CNKI databases were electronically searched to collect studies on SGA prediction models from database inception to August 10, 2022. Two researchers independently screened the literature, extracted data, evaluated the risk of bias of the included studies, and conducted a systematic review. Results A total of 14 studies, comprising 40 prediction models constructed using 19 methods, such as logical regression and random forest, were included. The results of the risk of bias assessment from 13 studies were high; the area under the curve of the prediction models ranged from 0.561 to 0.953. Conclusion The overall risk of bias in the prediction models for SGA was high, and the predictive performance was average. Models built using extreme gradient boosting (XGBoost) demonstrated the best predictive performance across different studies. The stacking method can improve predictive performance by integrating different models. Finally, maternal blood pressure, fetal abdominal circumference, head circumference, and estimated fetal weight were important predictors of SGA.
Objective To observe the correlation between the level of advanced glycosylation end products (AGE) in skin and diabetic retinopathy (DR), and establish and preliminatively verify the nomogramolumbaric model for predicting the risk of DR. MethodsA clinical case-control study. A total of 346 patients with type 2 diabetes mellitus (T2DM) who were admitted to the Department of Endocrinology and Ophthalmology of the First Affiliated Hospital of Zhengzhou University from January 2023 to June 2024 were included in the study. Among them, 198 were males and 148 were females. The mean age was (54.77±10.92). According to whether the patients were accompanied by DR, the patients were divided into the non-DR group (NDR group) and the DR group (DR group), 174 and 172 cases, respectively. All patients underwent skin AGE detection using a noninvasive diabetes detector. Diabetes duration, hemoglobin A1c (HbA1c), fasting plasma glucose, Urea, creatinine (Crea), uric acid, total cholesterol, triglyceride, estimated glomerular filtration rate (eGFR), urinary albumin concentration (UALB), and body mass index (BMI) were collected in detail. Univariate analysis and multivariate logistic regression analysis were used to determine the independent risk factors for T2DM concurrent DR, and to construct a nomogram prediction model for DR risk. Receiver operating characteristic curve (ROC curve), calibration curve and decision curve (DCA) were used to evaluate the model. ResultsHypertension prevalence rate (χ2=3.892), Diabetes duration (Z=−7.708), BMI (Z=−2.627), HbA1c (Z=−4.484), Urea (Z=−4.620), Crea (Z=−3.526), UALB (Z=−6.999), AGE (Z=−8.097) in DR group were significantly higher than those in NDR group, with statistical significance (P<0.05); eGFR was lower than that in NDR group, the difference was statistically significant (Z=−6.061, P<0.05). Logistic regression analysis showed that AGE, diabetes duration, HbA1c, UALB and eGFR were independent risk factors for DR (P<0.05). Based on the results of multi-factor regression analysis, a nomogram prediction model was constructed. The area under ROC curve of the model was 0.843, 95% confidence interval was 0.802-0.884, sensitivity and specificity were 79.1% and 75.9%, respectively. The calibration curve was basically consistent with the ideal curve. The results of DCA analysis showed that when the model predicted the risk threshold of patients with DR between 0.17 and 0.99, the clinical net benefit provided by the nomogram model was>0. ConclusionsSkin AGE level is an independent risk factor for DR. The nomogram prediction model based on AGE, diabetes duration, HbA1c, eGFR and UALB can accurately predict the risk of DR, and has good clinical practicability.
ObjectiveTo systematically review mortality risk prediction models for acute type A aortic dissection (AAAD). MethodsPubMed, EMbase, Web of Science, CNKI, WanFang Data, VIP and CBM databases were electronically searched to collect studies of mortality risk prediction models for AAAD from inception to July 31th, 2021. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Systematic review was then performed. ResultsA total of 19 studies were included, of which 15 developed prediction models. The performance of prediction models varied substantially (AUC were 0.56 to 0.92). Only 6 studies reported calibration statistics, and all models had high risk of bias. ConclusionsCurrent prediction models for mortality and prognosis of AAAD patients are suboptimal, and the performance of the models varies significantly. It is still essential to establish novel prediction models based on more comprehensive and accurate statistical methods, and to conduct internal and a large number of external validations.