ObjectivesTo explore the construction method of prediction model of absolute risk for breast cancer and provide personalized breast cancer management strategies based on the results.MethodsA case-control design was conducted with 2 747 individuals diagnosed as primary breast cancer by pathology in West China Hospital of Sichuan University from 2000 to 2017 and 6 307 healthy controls from Breast Cancer Screening Cohort in Sichuan Women and Children Center and Chengdu Shuangliu District Maternal and Child Health Hospital. Standardized questionnaires and information management systems in hospital were used to collect information. Decision trees, logistic regression, the formula in Gail model and registration data in China were used to estimate the probability of 5-year risk of breast cancer. Eventually a ROC (receiver operating characteristics) curve was drawn to identify optimal cut-off value, and the power was evaluated.ResultsThe decision tree exported 4 variables, which were urban or rural sources, number of live birth, age and age at menarche. The median 5-year risk and interquartile range of the controls was 0.027% and 0.137%, while the median 5-year risk and interquartile range of the cases was 0.219% and 0.256%. The ROC curve showed the cut-off value was 0.100%. Through verification, the sensitivity was 0.79, the specificity was 0.73, the accuracy was 0.75, and the AUC (area under the curve) was 0.79.ConclusionsThe methods used in our study based on 9 054 female individuals in Sichuan province could be used to predict the 5-year risk for breast cancer. Predictor variables include urban or rural sources, number of live birth, age, and age at menarche. If the 5-year risk is more than 0.100%, the person will be judged as a high risk individual.
ObjectiveTo systematically review mortality risk prediction models for acute type A aortic dissection (AAAD). MethodsPubMed, EMbase, Web of Science, CNKI, WanFang Data, VIP and CBM databases were electronically searched to collect studies of mortality risk prediction models for AAAD from inception to July 31th, 2021. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Systematic review was then performed. ResultsA total of 19 studies were included, of which 15 developed prediction models. The performance of prediction models varied substantially (AUC were 0.56 to 0.92). Only 6 studies reported calibration statistics, and all models had high risk of bias. ConclusionsCurrent prediction models for mortality and prognosis of AAAD patients are suboptimal, and the performance of the models varies significantly. It is still essential to establish novel prediction models based on more comprehensive and accurate statistical methods, and to conduct internal and a large number of external validations.
Objective To systematically review the performance of postpartum hemorrhage risk prediction models, and to provide references for the future construction and application of effective prediction models. Methods The CNKI, WanFang Data, VIP, CBM, PubMed, EMbase, The Cochrane Library, Web of Science, and CINAHL databases were electronically searched to identify studies reporting risk prediction models for postpartum hemorrhage from database inception to March 20th, 2022. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias and applicability of the included studies. Results A total of 39 studies containing 58 postpartum hemorrhage risk prediction models were enrolled. The area under the curve of 49 models was over 0.7. All but one of the models had a high risk of bias. Conclusion Models for predicting postpartum hemorrhage risk have good predictive performance. Given the lack of internal and external validation, and the differences in study subjects and outcome indicators, the clinical value of the models needs to be further verified. Prospective cohort studies should be conducted using uniform predictor assessment methods and outcome indicators to develop effective prediction models that can be applied to a wider range of populations.
Objective To systematically review prediction models of small for gestational age (SGA) based on machine learning and provide references for the construction and optimization of such a prediction model. Methods The PubMed, EMbase, Web of Science, CBM, WanFang Data, VIP and CNKI databases were electronically searched to collect studies on SGA prediction models from database inception to August 10, 2022. Two researchers independently screened the literature, extracted data, evaluated the risk of bias of the included studies, and conducted a systematic review. Results A total of 14 studies, comprising 40 prediction models constructed using 19 methods, such as logical regression and random forest, were included. The results of the risk of bias assessment from 13 studies were high; the area under the curve of the prediction models ranged from 0.561 to 0.953. Conclusion The overall risk of bias in the prediction models for SGA was high, and the predictive performance was average. Models built using extreme gradient boosting (XGBoost) demonstrated the best predictive performance across different studies. The stacking method can improve predictive performance by integrating different models. Finally, maternal blood pressure, fetal abdominal circumference, head circumference, and estimated fetal weight were important predictors of SGA.
As precision medicine continues to gain momentum, the number of predictive model studies is increasing. However, the quality of the methodology and reporting varies greatly, which limits the promotion and application of these models in clinical practice. Systematic reviews of prediction models draw conclusions by summarizing and evaluating the performance of such models in different settings and populations, thus promoting their application in practice. Although the number of systematic reviews of predictive model studies has increased in recent years, the methods used are still not standardized and the quality varies greatly. In this paper, we combine the latest advances in methodologies both domestically and abroad, and summarize the production methods and processes of a systematic review of prediction models. The aim of this study is to provide references for domestic scholars to produce systematic reviews of prediction models.
ObjectiveTo systematically evaluate postpartum depression risk prediction models in order to provide references for the construction, application and optimization of related prediction models. MethodsThe CNKI, VIP, WanFang Data, PubMed, Web of Science and EMbase were electronically searched to collect studies on predictive model for the risk of postpartum from January 2013 to April 2023. Two reviewers independently screened the literature, extracted data, and assessed the quality of the included studies based on PROBAST tool. ResultsA total of 10 studies, each study with 1 optimal model were evaluated. Common predictors included prenatal depression, age, smoking history, thyroid hormones and other factors. The area under the curve of the model was greater than 0.7, and the overall applicability was general. Overall high risk of bias and average applicability, mainly due to insufficient number of events in the analysis domain for the response variable, improper handling of missing data, screening of predictors based on univariate analysis, lack of model performance assessment, and consideration of model overfitting. ConclusionThe model is still in the development stage. The included model has good predictive performance and can help early identify people with high incidence of postpartum depression. However, the overall applicability of the model needs to be strengthened, a large sample, multi-center prospective clinical study should be carried out to construct the optimal risk prediction model of PPD, in order to identify and prevent PPD as soon as possible.
ObjectiveTo explore the risk factors for accompanying depression in patients with community type Ⅱ diabetes and to construct their risk prediction model. MethodsA total of 269 patients with type Ⅱ diabetes accompanied with depression and 217 patients with simple type Ⅱ diabetes from three community health service centers in two streets of Pingshan District, Shenzhen from October 2021 to April 2022 were included. The risk factors were analyzed and screened out, and a logistic regression risk prediction model was constructed. The goodness of fit and prediction ability of the model were tested by the Hosmer-Lemeshow test and the receiver operating characteristic (ROC) curve. Finally, the model was verified. ResultsLogistic regression analysis showed that smoking, diabetes complications, physical function, psychological dimension, medical coping for face, and medical coping for avoidance were independent risk factors for depressive disorder in patients with type Ⅱ diabetes. Modeling group Hosmer-Lemeshow test P=0.345, the area under the ROC curve was 0.987, sensitivity was 95.2% and specificity was 98.6%. The area under the ROC curve was 0.945, sensitivity was 89.8%, specificity was 84.8%, and accuracy was 86.8%, showing the model predictive value. ConclusionThe risk prediction model of type Ⅱ diabetes patients with depressive disorder constructed in this study has good predictive and discriminating ability.
ObjectiveTo systematically review the research status of risk prediction models for gestational diabetes mellitus (GDM). MethodsThe CNKI, WanFang Data, VIP, CBM, PubMed, JBI EBP, Ovid MEDLINE, Embase, Web of Science and Cochrane Library databases were electronically searched to collect relevant literature on risk prediction models for GDM from inception to October 2022. Two researchers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, and then qualitative description was performed. ResultsA total of 19 studies were included, involving 19 risk prediction models. The evaluation results showed that, in terms of the risk of bias, 18 studies were high risk, and 1 study was unclear. In terms of applicability, 14 studies were high risk, 2 studies were low risk, and 3 studies were unclear. The area under the receiver operating characteristic curve of the included models was 0.69 to 0.88. The most common predictors included age, weight, pre-pregnancy BMI, history of diabetes, family history of diabetes, and race. ConclusionThe overall performance of the risk prediction model for gestational diabetes mellitus is good, but the risk of bias of the model is high, and the clinical applicability of the model needs to be further verified.
ObjectiveTo construct and verify the nomogram prediction model of pregnant women's fear of childbirth. MethodsA convenient sampling method was used to select 675 pregnant women in tertiary hospital in Tangshan City, Hebei Province from July to September 2022 as the modeling group, and 290 pregnant women in secondary hospital in Tangshan City from October to December 2022 as the verification group. The risk factors were determined by logistic regression analysis, and the nomogram was drawn by R 4.1.2 software. ResultsSix predictors were entered into the model: prenatal education, education level, depression, pregnancy complications, anxiety and preference for delivery mode. The areas under the ROC curves of the modeling group and the verification group were 0.834 and 0.806, respectively. The optimal critical values were 0.113 and 0.200, respectively, with sensitivities of 67.2% and 77.1%, the specificities were 87.3% and 74.0%, and the Jordan indices were 0.545 and 0.511, respectively. The calibration charts of the modeling group and the verification group showed that the coincidence degree between the actual curve and the ideal curve was good. The results of Hosmer-Lemeshow goodness of fit test were χ2=6.541 (P=0.685) and χ2=5.797 (P=0.760), and Brier scores were 0.096 and 0.117, respectively. DCA in modeling group and verification group showed that when the threshold probability of fear of childbirth were 0.00 to 0.70 and 0.00 to 0.70, it had clinical practical value. ConclusionThe nomogram model has good discrimination, calibration and clinical applicability, which can effectively predict the risk of pregnant women's fear of childbirth and provide references for early clinical identification of high-risk pregnant women and targeted intervention.
Clinical prediction models typically utilize a combination of multiple variables to predict individual health outcomes. However, multiple prediction models for the same outcome often exist, making it challenging to determine the suitable model for guiding clinical practice. In recent years, an increasing number of studies have evaluated and summarized prediction models using the systematic review/meta-analysis method. However, they often report poorly on critical information. To enhance the reporting quality of systematic reviews/meta-analyses of prediction models, foreign scholars published the TRIPOD-SRMA reporting guideline in BMJ in March 2023. As the number of such systematic reviews/meta-analyses is increasing rapidly domestically, this paper interprets the reporting guideline with a published example. This study aims to assist domestic scholars in better understanding and applying this reporting guideline, ultimately improving the overall quality of relevant research.