Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.
ObjectiveTo summarize the recent research progress on pathogenesis of human arrest defective 1(ARD1) protein in colorectal cancer and treatment process. MethodsSearched the related literatures from the databases such as CNKI, PubMed and so on, the relevant ARD1 in the development, diagnosis and treatment of colorectal cancer were reviewed. ResultsARD1 has effect of anti colorectal cancer, it can inhibit the proliferation and promote apoptosis of colorectal cancer cells, and improve the sensitivity of colorectal cancer cells to anticancer drugs at the cellular level. The treatment is mainly through the induction of cancer cell apoptosis or (and) decreased the proliferation ability of cancer cells, thus delaying the disease process. However, it is still in the research stage of animal experiments, which can not be directly applied to clinical practice. Conciusions ARDl study on the mechanism of anti colorectal cancer cells has become the focus of research with animal research and promotion, and provide new therapy concepts and measures for diagnosis and treatment of colorectal cancer.
OBJECTIVE: To analysis the proliferation properties and telomerase activity of human embryonic tendon cells transformed by ptsA58H plasmid cultured in vitro continuously. METHODS: The 40th, 70th, and 75th passages of transformed human embryonic tendon cells (THETC) were adopted. The collagen secretion of THETC was detected by immunohistochemical methods, the growth curve of different passages of THETC was compared, and chromosome karyotype was analyzed. Total RNA of THETC were extracted to detect human telomerase reverse transcriptase (hTERT) mRNA expression by RT-PCR technique. RESULTS: When THETC were subcultured to 70 passages, the morphological characteristics of cells changed and began replicative senescence. THETC still could secret type I collagen normally. The chromosome of THETC was heteroploid (2n = 94). There were no hTERT mRNA expression. CONCLUSION: SV40 transfection can not make human embryonic tendon cells immortalization, on the other hand, human embryonic tendon cells transformed by ptsA58H plasmid has no tendency of malignant transformation.
Objective To investigate the relationship between keloid proliferation and destruction of skin appendages(SAs). Methods Pathological biopsies of keloids were derived from 17 patients whounderwent scar resection. All samples were divided into 4 groups: infiltrating growth locus of keloids(K-I,n=9),proliferative keloids (K-P,n=17), atrophic keloids (K-A,n=10), and edging normal skin (K-N,n=6). Normal skin derived from thorax of patients was used as control (NS, n=6). The density of SAs and the expressive characteristics of pan-cytokeratin (CKp), cytokeratin19 (CK19), secretory component of glandular epithelium(SC), proliferating cell nuclear antigen(PCNA), and apoptosis related proteins (Bcl-2 and Bax) were observed with immunohistochemical method. Results Compared with K-N and NS, the density of SAs expressing CKP and SC in keloids was apparently decreased, and remnant of CKp protein was observed after the disappearance of SAs structures. Protein expression of Bax was increased in epithelial cellsof most SAs. SAs containing postive immunostaining signals of Bcl-2, PCNA and CK19 exhibited squamous epithelization and abnormal structure. The structure of SAs underwent 3 morphological stages: infiltrating, proliferating, and maturing.In correspondence to each stage, SAs underwent proliferation, structural destruction, and fibrosis which were caused by cellular migration, nflammatory reaction, and vascular occlusion respectively. Conclusion Abnormal proliferation of epithelial cells and their structural destruction of SAs may beassociated with tissue fibrosis in keloid lesion.
Objective To observe the proliferation and migration of endothelial cells after 30% total burn surface area (TBSA) of deep partial thickness scald, and the effect of basic fibroblast growth factor (bFGF) on angiogenesis during wound healing.Methods A total of 133 male Wistar ratswere divided randomly into normal control (n=7), injured control group (n=42), bFGF group (n=42) andanti-c-fos group (n=42). The apoptosis expression of fibroblasts was determinedwith in situ hybridization and the changes of proliferation cell nuclear antigen(PCNA), focal adhesion rinase(FAK), c-fos and extracellular signalregulated kinase(ERK) proteins expression were detected with immunohistochemistry staining technique after 3 hours, 6 hours, 1 day, 3 days, 7 days, 14 days and 21 days of scald.Results In injured control group and bFGF group, theproliferation rate of the vascular endothelial had evident changes 7 days and14 days after scald; the expression of FAK was increased 14 days after scald. ERK proteins expression was different between injury control group and bFGF group at initial stage after scald. Stimulation of ERKs by bFGF led to up-regulation of c-fos and b expression of FAK. Conclusion Exogenous bFGF extended the influence on wound healing process by ERK signaling pathway, affecting migration cascade of vascular endothelial cell. The oncogene proteins play an important role on accelerating angiogenesis duringwound healing.
ObjectiveTo investigate the effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), a hypoxia-inducible factor-1α (HIF-1α) inhibitor, on hypoxia induced rat pulmonary arterial adventitial fibroblasts (AFs) proliferation and collagen synthesis, and explore the molecular mechanism.MethodsUnder hypoxic condition, rat AFs were cultured in DMEM medium supplemented with 10% fetal bovine serum in vitro. The cells were divided into five groups, ie. a normoxia group, a hypoxia group and three hypoxia+YC-1 groups (treated with YC-1 at concentration of 0.01, 0.05 and 0.1 mmol/L, respectively). The cells proliferation was determined by MTT method. Collagen synthesis of AFs was measured by 3H-proline incorporation assay. The expression of HIF-1α in AFs in different conditions was measured by Western blot, and the mRNA expression of transforming growth factor-β1 (TGF-β1) was measured by reverse-transcription polymerase chain reaction.ResultsThe proliferation rate and the incorporation data of 3H-proline in the hypoxia group were significantly increased as compared with those in the control group (both P<0.01). YC-1 significantly reduced the proliferation rate and incorporation data of3H-proline induced by hypoxia in a dose-dependent manner. YC-1 could also down-regulate the expressions of HIF-1α and TGF-β1 mRNA significantly (both P<0.01). Compared with the hypoxia group, the expressions of HIF-1α and TGF-β1 mRNA decreased respectively by 65% and 61% in the hypoxia+YC-1 (0.1 mmol/L) group (bothP<0.01).ConclusionsYC-1 can inhibit hypoxia-induced AFs proliferation and collagen synthesis in a dose-dependent manner. The mechanism may relate to YC-1’s inhibitory effect on expressions of HIF-1α and TGF-β1 mRNA.
ObjectiveTo investigate the effect of up-regulation of microRNA-31(miR-31) on the biological behaviour in AGS cell of gastric cancer and on the expression of liver receptor homolog-1(LRH-1), and to analyze the possible mechanisms of miR-31 on initiation and development of gastric cancer. MethodsAGS cells were divided into 3 groups, receiving miR-31 transfection(MT group), empty liposomes transfection(NC group), and treatment of PBS (BC group). Then the cells' proliferation was determined by cell counting kit-8(CCK-8), the apoptosis situation was determined by flow cytometer, the migration was determined by Transwell test, the expression of LRH-1 protein was tested by Western blot method, and the target of miR-31 was tested by luciferase reporter assay. ResultsThe cell's proliferation results showed that the mean of A450 value in MT, NC, and BC groups were 1.31, 2.26, and 2.14 respectively on the 4 days after transfection, which lower in MT group(P<0.01).Results of flow cytometer experiment showed that the mean of apoptosis ratio of MT, NC, and BC groups were 39.5%, 9.3%, and 10.0% respectively, the mean of proportion of cell in G1+S stage were 92.54%, 73.23%, and 74.58% respectively, which both lower in MT group (P<0.05).Results of Transwell experiment showed that the mean of number of migrated cells in MT group was lower (P<0.05).Results of Western blot experiment demonstrated that the expression level of LRH-1 protein in MT group was lower than those of BC group and NC group(P<0.01). ConclusionsUp-regulation of miR-31 can obviously inhibit the proliferation of AGS cell, promoting its apoptosis and depressing its migration ability. On the other side, the up-regulation of miR-31 can also inhibit the expression level of LRH-1 protein, which indirectly induces the inhibition of proliferation of AGS cell. So miR-31 may be an important regulator in the initiation and development of gastric cancer through regulating LRH-1 gene.
ObjectiveTo explore the effects of several immunosuppressants on the proliferation of pheochromocytoma 12 (PC12) and L929 cells. 〖WTHZ〗Methods Different concentrations of methylprednisolone(10-3,10-4, 10-6and 10-8 mol/L), cyclosporin A(CsA,10-5 ,10-6 , 10 -7and 10-8 mol/L) and FK506 (10-6 ,10-7 , 10-8and 10-9mol/L)were administrated to the PC12 and L929 cells, while control group was given no drugs. At 24, 48 and 72 hours after administration, the cell proliferationwasmeasured with MTT methods respectively. The results were compared and analyzed statistically. Results High concentration methylprednisolone (10-3 mol/L) and low concentration CsA (10-8-10-7mol/L) could promote the proliferation of PC12 cells within 48 hours after administration, after that, the proliferation effects were no longer significant. There were no promotion effects for different concentrations of FK506. Under high concentrations, both CsA (10-6 -1×10-5 mol/L) and methylprednisolone (10-3 mol/L) could significantly inhibit the proliferationof L929 cells after 24 hours of administration. And high concentration (10-6mol/L) FK506 could promote the proliferation of L929 cells transitorily (only for 48 hours after administration). Conclusion 10-3 mol/L methylprednisolone and 10-8 -10-7mol/L CsA can promote the proliferation of PC12 cells for a short period of time. Both 10-3 mol/L methylprednisolone and 10-6-10-5mol/L CsA can significantly inhibit proliferation of L929.
ObjectiveTo investigate the expression of mitochondrial transcription factor A (TFAM) in colon cancer and the effect of its expression on proliferation of colon cancer cell. MethodsThirty cases of colon cancer in the First Affiliated Hospital of Sun Yat-sen University from March 2013 to April 2013 were studied. TFAM mRNA was detected both in colon cancer tissue and para-cancer tissue by real-time PCR. TFAM mRNA and protein were detected in normal colon cell strain and colon cancer strains SW480, HT-29, and HCT116 by real-time PCR and Western blot, respectively. The proliferation of SW480 cells was evaluated after up-regulating TFAM. ResultsThe expression of TFAM mRNA in the colon cancer tissue was significantly higher than that in the para-cancer tissue (P < 0.000 1). The expressions of TFAM mRNA were obviously increased in the SW480, HT-29, and HCT116 cells as compared with the normal colon cell strain (P value was 0.000 8, 0.002 3, and 0.000 6, respectively), among which the most notable increase was detected in the SW480 cells. The expressions of TFAM protein were obviously increased in the SW480, HT-29, and HCT116 cells as compared with the normal colon cell strain (P value was 0.000 2, 0.003 8, and 0.001 6, respectively), among which the most notable increase was detected in the SW480 cells. After up-regulating TFAM by plasmid transfection, the proliferation of the pcDNA3.1-TFAM-SW480 cell was increased significantly as compared with the pcDNA3.1-SW480 cell at 96 h and 120 h after transfection by the MTT test (P < 0.000 1). The proliferation of the pcDNA3.1-TFAM-SW480 cell was increased significantly as compared with the pcDNA3.1-SW480 cell at 48 h after transfection by the BrdU test (P < 0.001 0). ConclusionTFAM expression is high in colon cancer. Up-regulated TFAM could promote the proliferation of colon cancer cells.
Objective To investigate the effects of sodium hyaluronate solution on the proliferation and differentiation of myoblasts. Methods The 3rd subculture myoblasts from muscle of infant SD rat were cultured in four growth media, in which the concentrations of sodium hyaluronate were 0.05% (group A) , 0.1%( group B), 0.2% (group C)and 0 (group D, control group), respectively. The proliferation rate of myoblasts in each medium was observed through growth curves by means of count and MTT. At the same time, the subculture myoblasts were cultured in differentiated media in which the concentrations of sodium hyaluronate were 0 and 0.1%. The capacity of fusion of myoblasts was compared between two kinds of differentiated media. Results There were the nearly same proliferation curse in Groups A, B and C: increasing by logarithm at 2 days and reaching peak value at 4 days. The myoblasts in Group D increased slowly: increasing by logarithm at 3 days, doubling at 5 days and reaching peak value at 6 days. MTT has the similar curse to counting. The myoblast proliferation of Group B was more than that of the other groups. The peak value of myoblast fusion was 35% at 6 days in common differentiated media; slowly reached 11.7% at 7 days in the differentiated media in which the concentrations of sodiumhyaluronate was 0.1%.Conclusion Sodium hyaluronate at certain concentration can be a decent media for myoblasts, it can accelerate proliferation and differentiation of myoblasts.