Solitary pulmonary nodule (SPN) is defined as a rounded opacity≤3 cm in diameter surrounded by lung parenchyma. The majority of smokers who undergo thin-section CT have SPNs, most of which are smaller than 7 mm. In the past, multiple follow-up examinations over a two-year period, including CT follow-up at 3, 6, 12, 18, and 24 months, were recommended when such nodules are detected incidentally. This policy increases radiation burden for the affected population. Nodule features such as shape, edge characteristics, cavitation, and location have not yet been found to be accurate for distinguishing benign from malignant nodules. When SPN is considered to be indeterminate in the initial exam, the risk factor of the patients should be evaluated, which includes patients' age and smoking history. The 2005 Fleischner Society guideline stated that at least 99% of all nodules 4 mm or smaller are benign; when nodule is 5-9 mm in diameter, the best strategy is surveillance. The timing of these control examinations varies according to the nodule size (4-6, or 6-8 mm) and the type of patients, specifically at low or high risk of malignancy concerned. Noncalcified nodules larger than 8 mm diameter bear a substantial risk of malignancy, additional options such as contrast material-enhanced CT, positron emission tomography (PET), percutaneous needle biopsy, and thoracoscopic resection or videoassisted thoracoscopic resection should be considered.
ObjectiveTo assess the feasibility of 3D digital lung software used in preoperative planning of patients with multiple pulmonary nodules and poor pulmonary function. MethodsFive patients with multiple pulmonary nodules in the left lung, meanwhile with a history of single lung lobectomy in the right lung were included in our hospital between June and December 2015. There were 4 males and 1 female at an average age of 50.4±2.6 years. A 320-slice volumetric CT scanner was used to the CT angiography (CTA) of the pulmonary artery. The data of CT images were imported into the 3D digital lung software that was researched and developed by Xiamen QiangBen Science and Technology Company. The 3D reconstruction of digital virtual lung was completed by this software based on those data. At the same time the soft-ware completed the automatic segmentation of the lung based on the pulmonary artery system and the 3D reconstruction of the pulmonary nodules. The 3D digital lung software calculated the volume proportion of the intended removal (segm-ental lesions) to the whole lung, estimated the effect of surgery on forced expired volume in one second (FEV1), and the patient's tolerance ability to surgery. After the preoperative planning, the patients received multiple pulmonary segmental/subsegmental resection under the general anesthesia by video-assisted thoracoscopic surgery (VATS). ResultsThe 3d reconstruction of the pulmonary arteries reached 5 levels in 5 patients. And the software automatically identified out the lung segment/subsegment to show the lung nodules of lung segment/subsegment. The preselection lung volume of 5 patients accounted for 14.00%-27.00% of total lung volume. The software estimated FEV1 as 1.16-1.46 L which can tolerate the operation. The 5 patients were successfully performed surgery of multiple pulmonary segmental/subsegmental resection under the general anesthesia by VATS. The software located lung nodules from the resection of pulmonary segments during operation immediately. Then we sent them to the rapid pathological examination for diagnosis. After operation, the patients recovered well, and had no respiratory insufficiency. Hospitalization day was 4 days. ConclusionThe 3D digital pulmonary software can not only automatically identify the pulmonary segments, precisely position the pulmonary nodule, show the relationship among the target pulmonary segments artery, vein, bronchus and the surroun-ding artery, vein, and bronchus, but also calculate the volume of the pulmonary segments, estimate the impact of the pulmonary segmentectomy on the FEV1. It is useful for precise evaluation of the tolerant capacity of multiple pulmonary nodules in patients with unstaged multiple pulmonary segments.
Objective To explore the diagnostic value and safety of CT-guided percutaneous lung biopsy (CT-PLB) for pulmonary nodules. Methods A total of 438 patients with pulmonary nodules underwent CT-PLB for further diagnosis. Results The CT-PLB was performed successfully in all 438 patients. The positive biopsy rate at the first puncture was 94.9%, and 100.0% at the second puncture. The pathology results revealed 379 (86.5%) cases of malignant lesions, 37 cases of benign lesions, and 22 cases with uncertainty. The sensitivity, specificity and accuracy of CT-PLB were 97.9% (376/384), 94.4% (51/54), and 97.4% (427/438), respectively. The first puncture induced complications included pneumothorax in 33 (7.5%) cases, blood in phlegm in 62 (14.2%) cases, pleural reaction in 7 (1.6%) cases, and bleeding at the site of puncture in 6 (1.4%) cases. There was no occurrence of neoplasm needle track implantation. The second puncture induced complications included pneumothorax in 7 (46.6%) cases and blood in phlegm in 11 (73.3%) cases. The incidences of pneumothorax and blood in phlegm were significantly higher in the patients with chronic obstructive pulmonary disease (COPD), with pulmonary lesion size<3 cm, or with penetration depth ≥5 cm (P<0.05). Conclusions CT-PLB is a safe method with a relatively small trauma and has good diagnostic value for pulmonary nodules. The incidence of complications increases in patients with smaller pulmonary lesions, deeper puncture, or COPD.
Objective To investigate the diagnostic value of tumor marker combining the probability of malignancy model in pulmonary nodules. Methods A total of 117 patients with pulmonary nodules diagnosed between January 2013 and January 2016 were retrospectively analyzed. Seventy-six cases of the patients diagnosed with cancer were selected as a lung cancer group. Forty-one cases of the patients diagnosed with benign lesions were selected as a benign group. Tumor markers were detected and the probability of malignancy were calculated. Results The positive rate of carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), neuron-specific enolase (NSE), cytokeratin marker (CYFRA21-1), and the probability of malignancy in the lung caner group were significantly higher than those of the benign group. The sensitivity, specificity, and accuracy of CEA, CA125, NSE, CYFRA21-1 combined detection were 72.37%, 73.17%, and 72.65%, respectively. Using the probability of malignancy model to calculate each pulmonary nodules, the area under ROC curve was 0.743 which was higher than 0.7; and 28.5% was selected as cut-off value based on clinical practice and ROC curve. The sensitivity, specificity, and accuracy of the probability of malignancy model were 63.16%, 78.05%, and 68.68%, respectively. The sensitivity, specificity, and accuracy of tumor marker combining the probability of malignancy model were 93.42%, 68.29%, and 92.31%, respectively. The sensitivity and accuracy of tumor marker combining the probability of malignancy model were significantly improved compared with tumor markers or the probability of malignancy model single detection (P<0.01). Conclusion The tumor marker combining the probability of malignancy model can improve the sensitivity and accuracy in diagnosis of pulmonary nodules.
Early diagnosis of lung cancer is difficult because of it’s lacking in distinctive clinical characteristics. With the development of CT technology for chest, the detection rate of pulmonary nodules is increasing year by year and acquires extensive attention. Therefore, the accurate clinical diagnosis to identify the character of solitary pulmonary nodules is urgently needed. However, the current clinical applications of different diagnosis have pluses and minuses. In this paper, we mainly review the diagnosis, management strategies and the existing problems of solitary pulmonary nodules based on the cancer-screening guidelines of Fleischner Society, American College of Chest Physicians, National Comprehensive Cancer Network, Evaluation of Pulmonary Nodules: Clinical Practice Consensus Guidelines for Asia, and Chinese Consensus on Pulmonary Nodules, and clinical research progress of pulmonary nodules.
Objective To explore the efficacy of a novel detection technique of circulating tumor cells (CTCs) to identify benign and malignant lung nodules. Methods Nanomagnetic CTC detection based on polypeptide with epithelial cell adhesion molecule (EpCAM)-specific recognition was performed on enrolled patients with pulmonary nodules. There were 73 patients including 48 patients with malignant lesions as a malignant group and 25 patients with benign lesion as a benign group. There were 13 males and 35 females at age of 57.0±11.9 years in the malignant group and 11 males and 14 females at age of 53.1±13.2 years in the benign group. e calculated the differential diagnostic efficacy of CTC count, and conducted subgroup analysis according to the consolidation-tumor ratio, while compared with PET/CT on the efficacy. Results CTC count of the malignant group was significantly higher than that of the benign group (0.50/ml vs. 0.00/ml, P<0.05). Subgroup analysis according to consolidation tumor ratio (CTR) revealed that the difference was statistically significant in pure ground glass (pGGO) nodules 1.00/mlvs. 0.00/ml, P<0.05), but not in part-solid or pure solid nodules. For pGGO nodules, the area under the receiver operating characteristic (ROC) curve of CTC count was 0.833, which was significantly higher than that of maximum of standardized uptake value (SUVmax) (P<0.001). Its sensitivity and specificity was 80.0% and 83.3%, respectively. Conclusion The peptide-based nanomagnetic CTC detection system can differentiate malignant tumor and benign lesions in pulmonary nodules presented as pGGO. It is of great clinical potential as a noninvasive, nonradiating method to identify malignancies in pulmonary nodules.
ObjectiveTo explore and analyze the risk factors of pleural invasion in patients with small nodular type stage ⅠA pulmonary adenocarcinoma.MethodsFrom June 2016 to December 2017, 168 patients with small nodular type stage ⅠA pulmonary adenocarcinoma underwent surgical resection in the First Affiliated Hospital of Nanjing Medical University. There were 59 males and 109 females aged 58.7±11.5 years ranging from 28 to 83 years. The clinical data were analyzed retrospectively. Single factor Chi-square test and multivariate logistic regression were used to analyze the independent risk factors of pleural invasion.ResultsAmong 168 patients, 20 (11.9%) were pathologically confirmed with pleural invasion and 148 (88.1%) with no pleural invasion. Single factor analysis revealed significant differences (P<0.05) in nodule size, nodule status, pathological type, relation of lesion to pleura (RLP), distance of lesion to pleura (DLP), epidermal growth factor receptor (EGFR) mutation between patients with and without pleural invasion in stage ⅠA pulmonary adenocarcinoma. Logistic multivariate regression analysis showed that significant differences of nodule size, nodule status, RLP, DLP and EGFR mutation existed between the two groups (P<0.05), which were independent risk factors for pleural invasion.ConclusionImageological-pathological-biological characteristics of patients with small nodular type stage ⅠA pulmonary adenocarcinoma are closely related to pleural invasion. The possibility of pleural invasion should be evaluated by combining these parameters in clinical diagnosis and treatment.
ObjectivesTo investigate the influence of scanning parameters (tube voltages and tube currents) on image quality and corresponding radiation doses with simulated lung nodules in chest CT.MethodsThe anthropomorphic chest phantoms with 12 simulated, randomly placed nodules of different diameters and densities in the chest were scanned by different scanning parameters. The detection rate, degree of nodular deformation, image quality (with both subjective and objective evaluation) and the corresponding radiation doses were recorded and evaluated, and the correlation between nodule detection rate, degree of nodular deformation, radiation dose and image quality using different scanning parameters was analyzed.ResultsThe image quality improved with the increase of tube voltage and tube current (P<0.05). When the tube current was constant, the CT values of the vertebral decreased gradually with the increase of tube voltages (P<0.05); however, significant difference was not detected in CT values of the lung field (P>0.05). When the tube current was 100 mAs, the lung nodules with CT values of +100 HU and −630 HU showed statistical difference when using different tube voltage (P<0.05); but there was no significant difference in nodules of −800 HU (P=0.57). When tube voltage was 100 kV and 120 kV each, it was possible to detect all lung nodules with a detection rate of 100%. The detection rate was 33% and 66% in 3 mm diameter when the tube current was 80 kV/15 mA and 80 kV/20 mA, respectively. The nodules deformation in nodules with a CT value of −630 HU and diameter less than 5 mm was the most prominent (P<0.05). After analyzing the relationship between image quality and radiation doses using different tube voltages, we established a system of correlation equations: 80 kV: Y=2.625X+0.038; 100 kV: Y=14.66X+0.158; 120 kV: Y=18.59X+0.093.ConclusionsThe image quality improves with the increase of tube current and tube voltage, as well as the corresponding radiation doses. By reducing the tube voltage and increasing the tube current appropriately, the radiation doses can be reduced. Follow-up CT examination of pulmonary ground glass nodules should apply the same tube voltage imaging parameters, so as to effectively reduce the measurement error of nodule density and evaluate the change of nodules more accurately.
ObjectiveTo evaluate the feasibility and clinical value of robot-assisted lung segmentectomy through anterior approach.MethodsWe retrospectively analyzed the clinical data of 77 patients who underwent robotic lung segmentectomy through anterior approach in our hospital between June 2018 to October 2019. There were 22 males and 55 females, aged 53 (30-71) years. Patients' symptoms, general conditions, preoperative imaging data, distribution of resected lung segments, operation time, bleeding volume, number of lymph node dissected, postoperative duration of chest tube insertion, drainage volume, postoperative hospital stay, postoperative complications, perioperative death and other indicators were analyzed.ResultsAll operations were successfully completed. There was no conversion to thoracotomy, serious complications or perioperative death. The postoperative pathology revealed early lung cancer in 48 patients, and benign tumors in 29 patients. The mean clinical parameters were following: the robot Docking time 1-30 (M=4) min, the operation time 30-170 (M=76) min, the blood loss 20-400 (M=30) mL, the drainage tube time 2-15 (M=4) days, the drainage fluid volume 200-3 980 (M=780) mL and the postoperative hospital time 3-19 (M=7) days.ConclusionRobotic lung segmentectomy through anterior approach is a safe and convenient operation method for pulmonary nodules.
ObjectiveBy applying the mutual corroboration in the diagnosis, we aimed to improve the accuracy of preoperative imaging diagnosis, select the appropriate timing of operation and guide the follow-up time for patients with pulmonary nodules.MethodsClinical data of 1 368 patients with pulmonary nodules undergoing surgical treatment in our department from July 2016 to October 2019 were summarized. There were 531 males and 837 females at age of 44 (21-67) years. The intraoperative findings, images and pathology were classified and analyzed. The imaging pathology and pathological changes of pulmonary nodules were shown as a dynamic process through mutual collaboration and interaction.ResultsOf 1 368 patients with pulmonary nodules, 376 (27.5%) were pure ground-glass nodules, 729 (53.3%) were mixed ground-glass nodules and 263 (19.2%) were solid nodules. Among the pure ground-glass nodules, adenocarcinoma in situ (AIS) accounted for the highest proportion (156 patients), followed by microinvasive adenocarcinoma (MIA, 90 patients), atypical adenomatous hyperplasia (AAH, 85 patients), and benign tumors (20 patients). Among mixed ground-glass nodules, 495 patients were invasive adenocarcinoma (IA) and 207 patients of MIA. In solid nodules, patients were characterized by pathology of either IA (213 patients) or benign tumors (50 patients), and no patient was featured by AAH, AIS or MIA.ConclusionThe mutual collaboration and interaction can improve the accuracy of preoperative diagnosis of pulmonary nodules, and it supports the choice of operation timing and the judgment of follow-up time.