Objective To develop an innovative recognition algorithm that aids physicians in the identification of pulmonary nodules. MethodsPatients with pulmonary nodules who underwent thoracoscopic surgery at the Department of Thoracic Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School in December 2023, were enrolled in the study. Chest surface exploration data were collected at a rate of 60 frames per second and a resolution of 1 920×1 080. Frame images were saved at regular intervals for subsequent block processing. An algorithm database for lung nodule recognition was developed using the collected data. ResultsA total of 16 patients were enrolled, including 9 males and 7 females, with an average age of (54.9±14.9) years. In the optimized multi-topology convolutional network model, the test results demonstrated an accuracy rate of 94.39% for recognition tasks. Furthermore, the integration of micro-variation amplification technology into the convolutional network model enhanced the accuracy of lung nodule identification to 96.90%. A comprehensive evaluation of the performance of these two models yielded an overall recognition accuracy of 95.59%. Based on these findings, we conclude that the proposed network model is well-suited for the task of lung nodule recognition, with the convolutional network incorporating micro-variation amplification technology exhibiting superior accuracy. Conclusion Compared to traditional methods, our proposed technique significantly enhances the accuracy of lung nodule identification and localization, aiding surgeons in locating lung nodules during thoracoscopic surgery.
ObjectiveTo evaluate the clinical feasibility and safety of CT-guided percutaneous microwave ablation for peripheral solitary pulmonary nodules.MethodsThe imaging and clinical data of 33 patients with pulmonary nodule less than 3 cm in diameter treated by CT-guided microwave ablation treatment (PMAT) in our hospital from July 2018 to December 2019 were retrospectively analyzed. There were 21 males and 12 females aged 38-90 (67.6±13.4) years. Among them, 26 patients were confirmed with lung cancer by biopsy and 7 patients were clinically considered as partial malignant lesions. The average diameter of 33 nodules was 0.6-3.0 (1.8±0.6) cm. The 3- and 6-month follow-up CT was performed to evaluate the therapy method by comparing the diameter and enhancement degree of lesions with 1-month CT manifestation. Short-term treatment analysis including complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD) was calculated according to the WHO modified response evaluation criteria in solid tumor (mRECIST) for short-term efficacy evaluation. Eventually the result of response rate (RR) was calculated. Progression-free survival was obtained by Kaplan–Meier analysis.ResultsCT-guided percutaneous microwave ablation was successfully conducted in all patients. Three patients suffered slight pneumothorax. There were 18 (54.5%) patients who achieved CR, 9 (27.3%) patients PR, 4 (12.1%) patients SD and 2 (6.1%) patients PD. The short-term follow-up effective rate was 81.8%. Logistic analysis demonstrated that primary and metastatic pulmonary nodules had no difference in progression-free time (log-rank P=0.624).ConclusionPMAT is of high success rate for the treatment of solitary pulmonary nodules without severe complications, which can be used as an effective alternative treatment for nonsurgical candidates.
Objective The management of pulmonary nodules is a common clinical problem, and this study constructed a nomogram model based on FUT7 methylation combined with CT imaging features to predict the risk of adenocarcinoma in patients with pulmonary nodules. Methods The clinical data of 219 patients with pulmonary nodules diagnosed by histopathology at the First Affiliated Hospital of Zhengzhou University from 2021 to 2022 were retrospectively analyzed. The FUT7 methylation level in peripheral blood were detected, and the patients were randomly divided into training set (n=154) and validation set (n=65) according to proportion of 7:3. They were divided into a lung adenocarcinoma group and a benign nodule group according to pathological results. Single-factor analysis and multi-factor logistic regression analysis were used to construct a prediction model in the training set and verified in the validation set. The receiver operating characteristic (ROC) curve was used to evaluate the discrimination of the model, the calibration curve was used to evaluate the consistency of the model, and the clinical decision curve analysis (DCA) was used to evaluate the clinical application value of the model. The applicability of the model was further evaluated in the subgroup of high-risk CT signs (located in the upper lobe, vascular sign, and pleural sign). Results Multivariate logistic regression analysis showed that female, age, FUT7_CpG_4, FUT7_CpG_6, sub-solid nodules, lobular sign and burr sign were independent risk factors for lung adenocarcinoma (P<0.05). A column-line graph prediction model was constructed based on the results of the multifactorial analysis, and the area under the ROC curve was 0.925 (95%CI 0.877 - 0.972 ), and the maximum approximate entry index corresponded to a critical value of 0.562, at which time the sensitivity was 89.25%, the specificity was 86.89%, the positive predictive value was 91.21%, and the negative predictive value was 84.13%. The calibration plot predicted the risk of adenocarcinoma of pulmonary nodules was highly consistent with the risk of actual occurrence. The DCA curve showed a good clinical net benefit value when the threshold probability of the model was 0.02 - 0.80, which showed a good clinical net benefit value. In the upper lobe, vascular sign and pleural sign groups, the area under the ROC curve was 0.903 (95%CI 0.847 - 0.959), 0.897 (95%CI 0.848 - 0.945), and 0.894 (95%CI 0.831 - 0.956). Conclusions This study developed a nomogram model to predict the risk of lung adenocarcinoma in patients with pulmonary nodules. The nomogram has high predictive performance and clinical application value, and can provide a theoretical basis for the diagnosis and subsequent clinical management of pulmonary nodules.
Surgical resection is the only radical method for the treatment of early-stage non-small cell lung cancer. Intraoperative frozen section (FS) has the advantages of high accuracy, wide applicability, few complications and real-time diagnosis of pulmonary nodules. It is one of the main means to guide surgical strategies for pulmonary nodules. Therefore, we searched PubMed, Web of Science, CNKI, Wanfang and other databases for nearly 30 years of relevant literature and research data, held 3 conferences, and formulated this consensus by using the Delphi method. A total of 6 consensus contents were proposed: (1) Rapid intraoperative FS diagnosis of benign and malignant diseases; (2) Diagnosis of lung cancer types including adenocarcinoma, squamous cell carcinoma, others, etc; (3) Diagnosis of lung adenocarcinoma infiltration degree; (4) Histological subtype diagnosis of invasive adenocarcinoma; (5) The treatment strategy of lung adenocarcinoma with inconsistent diagnosis on degree of invasion between intraoperative FS and postoperative paraffin diagnosis; (6) Intraoperative FS diagnosis of tumor spread through air space, visceral pleural invasion and lymphovascular invasion. Finally, we gave 11 recommendations in the above 6 consensus contents to provide a reference for diagnosis of pulmonary nodules and guiding surgical decision-making for peripheral non-small cell lung cancer using FS, and to further improve the level of individualized and precise diagnosis and treatment of early-stage lung cancer.
ObjectiveTo reveal the scientific output and trends in pulmonary nodules/early-stage lung cancer prediction models. MethodsPublications on predictive models of pulmonary nodules/early lung cancer between January 1, 2002 and June 3, 2023 were retrieved and extracted from CNKI, Wanfang, VIP and Web of Science database. CiteSpace 6.1.R3 and VOSviewer 1.6.18 were used to analyze the hotspots and theme trends. ResultsA marked increase in the number of publications related to pulmonary nodules/early-stage lung cancer prediction models was observed. A total of 12581 authors from 2711 institutions in 64 countries/regions published 2139 documents in 566 academic journals in English. A total of 282 articles from 1256 authors were published in 176 journals in Chinese. The Chinese and English journals which published the most pulmonary nodules/early-stage lung cancer prediction model-related papers were Journal of Clinical Radiology and Frontiers in Oncology, respectively. Chest was the most frequently cited journal. China and the United States were the leading countries in the field of pulmonary nodules/early-stage lung cancer prediction models. The institutions represented by Fudan University had significant academic influence in the field. Analysis of keywords revealed that multi-omics, nomogram, machine learning and artificial intelligence were the current focus of research. ConclusionOver the last two decades, research on risk-prediction models for pulmonary nodules/early-stage lung cancer has attracted increasing attention. Prognosis, machine learning, artificial intelligence, nomogram, and multi-omics technologies are both current hotspots and future trends in this field. In the future, in-depth explorations using different omics should increase the sensitivity and accuracy of pulmonary nodules/early-stage lung cancer prediction models. More high-quality future studies should be conducted to validate the efficacy and safety of pulmonary nodules/early-stage lung cancer prediction models further and reduce the global burden of lung cancer.
ObjectiveTo reveal and demonstrate the hotspots and further research directions in screening technology for early lung cancer, and provide references for the future studies. MethodsResearches related to lung cancer screening from 2011 to 2021 in the Web of Science database were included. Biblioshiny, a bibliometrics program based on R language, was used to perform content analysis and visualization of the included literature information. ResultsResearches related to lung cancer screening were increasing year by year. Six major cooperation groups were formed between countries. The current research hotspots in the field of early lung cancer screening technology mainly focused on the multi-directional fusion of radiographic imaging, liquid biopsy and artificial intelligence. ConclusionLow-dose spiral CT screening is still the most important and mainstream method for the screening of early lung cancer at present. The combination and integration of artificial intelligence with various screening methods and the innovation of novel testing and diagnostic equipment are the current research hotspots and the future research trend in this field.
ObjectiveTo explore the efficiency of Ki-67 expression and CT imaging features in predicting the degree of invasion of lung adenocarcinoma. MethodsThe clinical data of 217 patients with pulmonary nodules, who were diagnosed as suspicious lung cancer by multi-disciplinary treatment clinic of pulmonary nodules in our hospital from September 2017 to August 2021, were retrospectively analyzed. There were 84 males and 133 females, aged 52 (25-84) years. The patients were divided into two groups according to the infiltration degree, including an adenocarcinoma in situ and microinvasive adenocarcinoma group (n=145) and an invasive adenocarcinoma group (n=72). ResultsThere was no statistical difference in the age and gender between the two groups (P>0.05). The univariate analysis showed that CK-7, P63, P40 and CK56 expressions were not different between the two groups (P=0.172, 0.468, 0.827, 0.313), while Napsin A, TTF-1 and Ki-67 expressions were statistically different (P=0.002, 0.020, <0.001). The multivariate analysis showed that Ki-67 expression was statistically different between the two groups (P<0.001). Ki-67 was positively correlated with malignant features of CT images and the degree of lung adenocarcinoma invasion (P<0.05). Ki-67 and CT imaging features alone could predict the degree of lung adenocarcinoma invasion, but their sensitivity and specificity were not high. Ki-67 combined with CT imaging features could achieve a higher prediction efficiency.ConclusionCompared with Ki-67 or CT imaging features alone, the combined prediction of Ki-67 and imaging features is more effective, which is of great significance for clinicians to select the appropriate operation occasion.
Lung cancer is a disease with high incidence rate and high mortality rate worldwide. Its diagnosis and treatment mode is developing constantly. Among them, multi-disciplinary team (MDT) can provide more accurate diagnosis and more individualized treatment, which can not only benefit more early patients, but also prolong the survival time of late patients. However, MDT diagnosis and treatment mode is only carried out more in provincial and municipal tertiary hospitals and has not been popularized. This article intends to introduce MDT mode and its advantages, hoping that MDT mode can be popularized and applied.
Lung cancer is the malignant tumor with the highest incidence and mortality rate in China. Early diagnosis and treatment are key to improving the survival rate and reducing the mortality rate for lung cancer patients. This article introduces the integrated management model for patients with pulmonary nodules/lung cancer developed by West China Hospital of Sichuan University based on “internet plus” and health service team of treatment, nursing, and care. The Integrated Care Management Center has established a multidisciplinary team, using internet platforms and artificial intelligence tools to develop a whole life cycle health service system for patients with pulmonary nodules/lung cancer, which is from the screening of high-risk population for lung cancer, the intelligent risk stratification and follow-up management of pulmonary nodules, the subsequent standardized diagnosis and treatment of lung cancer and comorbidity management, until the patient’s demise. After the implementation of this model, the malignancy rate in surgically treated patients with pulmonary nodules reached 85.08%, and the patient satisfaction score was 95.76. This model provides a new idea and reference for the innovation of chronic disease service model and the management of pulmonary nodules and lung cancer.
ObjectiveTo explore the influencing factors for Hook-wire precise positioning under CT guidance, determine the best positioning management strategy, and develop Nomogram prediction model. Methods Patients who underwent CT-guided Hook-wire puncture positioning in our hospital from July 2018 to November 2022 were selected. They were randomly divided into a training set and a validation set with a ratio of 7 : 3. Clinical data of the patients were analyzed, and the logistic analysis was used to screen out the risk factors that affected CT-guided Hook-wire precise positioning for the training set. The Nomogram prediction model was constructed according to the risk factors, and the goodness of fit test and clinical decision curve analysis were performed. ResultsA total of 199 patients with CT-guided Hook-wire puncture were included in this study, including 72 males and 127 females, aged 25-83 years. There were 139 patients in the training set and 60 patients in the validation set. In the training set, 70 patients were accurately located, with an incidence of 50.36%. Logistic regression analysis showed that height [OR=3.46, 95%CI (1.44, 8.35), P=0.006], locating needle perpendicular to the horizontal plane [OR=3.40, 95%CI (1.37, 8.43), P=0.008], locating needle perpendicular to the tangent line of skin surface [OR=6.01, 95%CI (2.38, 15.20), P<0.001], CT scanning times [OR=3.03, 95%CI (1.25, 7.33), P=0.014], occlusion [OR=10.56, 95%CI (1.98, 56.48), P=0.006] were independent risk factors for CT-guided Hook-wire precise localization. The verification results of the Nomogram prediction model based on these independent risk factors showed that the area under the receiver operating characteristic curve (AUC) was 0.843 [95%CI (0.776, 0.910)], and the predicted value of the correction curve was basically consistent with the measured value. The AUC of the model in the validation set was 0.854 [95%CI (0.759, 0.950)]. The decision curves showed that when the threshold probability was within the range of 8%-85% in the training set and 18%-99% in the validation set, there was a high net benefit value. Conclusion Height, the locating needle perpendicular to the horizontal plane, the locating needle perpendicular to the tangent line of skin surface, number of CT scans, and occlusion are independent risk factors for CT-guided Hook-wire accurate localization. The Nomogram model established based on the above risk factors can accurately assess and quantify the risk of CT-guided Hook-wire accurate localization.