Mental fatigue is an important factor of human health and safety. It is important to achieve dynamic mental fatigue detection by using electroencephalogram (EEG) signals for fatigue prevention and job performance improvement. We in our study induced subjects' mental fatigue with 30 h sleep deprivation (SD) in the experiment. We extracted EEG features, including relative power, power ratio, center of gravity frequency (CGF), and basic relative power ratio. Then we built mental fatigue prediction model by using regression analysis. And we conducted lead optimization for prediction model. Result showed that R2 of prediction model could reach to 0.932. After lead optimization, 4 leads were used to build prediction model, in which R2 could reach to 0.811. It can meet the daily application accuracy of mental fatigue prediction.
Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring.
Somatosensory vibration can stimulate somatosensory area of human body, and this stimulation is tranferred to somatosensory nerves, and influences the somatic cortex, which is on post-central gyrus and paracentral lobule posterior of cerebral cortex, so that it alters the functional status of brain. The aim of the present study was to investigate the neural mechanism of brain state induced by somatosensory vibration. Twelve subjects were involved in the 20 Hz vibration stimulation test. Linear and nonlinear methods, such as relative change of relative power (RRP), Lempel-Ziv complexity (LZC) and brain network based on cross mutual information (CMI), were applied to discuss the change of brain under somatosensory vibration stimulation. The experimental results showed the frequency following response (FFR) by RRP of spontaneous electroencephalogram (EEG) in 20 Hz vibration, and no obvious change by LZC. The information transmission among various cortical areas enhanced under 20 Hz vibration stimulation. Therefore, 20 Hz somatosensory vibration may be able to adjust the functional status of brain.
We applied Lempel-Ziv complexity (LZC) combined with brain electrical activity mapping (BEAM) to study the change of alertness under sleep deprivation in our research. Ten subjects were involved in 36 hours sleep deprivation (SD), during which spontaneous electroencephalogram (EEG) experiments and auditory evoked EEG experiments-Oddball were recorded once every 6 hours. Spontaneous and evoked EEG data were calculated and BEAMs were structured. Results showed that during the 36 hours of SD, alertness could be divided into three stages, i.e. the first 12 hours as the high stage, the middle 12 hours as the rapid decline stage and the last 12 hours as the low stage. During the period SD, LZC of Spontaneous EEG decreased over the whole brain to some extent, but remained consistent with the subjective scales. By BEAMs of event related potential, LZC on frontal cortex decreased, but kept consistent with the behavioral responses. Therefore, LZC can be effective to reflect the change of brain alertness. At the same time LZC could be used as a practical index to monitor real-time alertness because of its simple computation and fast calculation.
Vigilance is defined as the ability to maintain attention for prolonged periods of time. In order to explore the variation of brain vigilance in work process, we designed addition and subtraction experiment with numbers of three digits to induce the vigilance to change, combined it with psychomotor vigilance task (PVT) to measure this process of electroencephalogram (EEG), extracted and analyzed permutation entropy (PE) of 11 cases of subjects' EEG and made a brief comparison with nonlinear parameter sample entropy (SE). The experimental results showed that:PE could well reflect the dynamic changes of EEG when vigilance decreases, and has advantages of fast arithmetic speed, high noise immunity, and low requirements for EEG length. This can be used as a measure of the brain vigilance indicators.