west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "QIN Wen" 2 results
  • Role and mechanism of cAMP/Ca2+ signal pathway in differentiation of bone marrow mesenchymal stem cells into neuronal cells induced by salidroside

    To investigate the mechanism of cAMP/Ca2+ signaling pathway inducing bone marrow mesenchymal stem cells to differentiate into neuronal cells, we cultured the bone marrow mesenchymal stem cells D1 cells in the present study. D1 cells were divided into two groups: control group and salidroside inducing groups. Control group was cultured with complete culture solution D/F12, while salidroside inducing groups were induced with 100 mg·L–1 salidroside for different time periods (24, 48 and 72 hours). PCR-array assay was used to detect expression of 84 calcium related mRNA, and significantly different genes were chosen to analyse. As a result, there were 4 significantly upregulated mRNAs inclu-ding DNA damage-inducible transcript 3 (Ddit3), heat shock protein 5 (Hspa5), protein phosphatase 1 regulatory subunit (Ppp1r15a) and prostaglandin-endoperoxide synthase 2 (Ptgs-2), and 4 significantly downregulated mRNAs including glucagon (Gcg), interleukin 2 (Il2), tumor necrosis factor (Tnf) and somatostatin (Sst) in the cAMP/Ca2+ signaling pathway. They probably had an effect on the process of salidroside induced D1 cells differentiating into neuronal cells.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • Effect of icariin/attapulgite/collagen type Ⅰ/polycaprolactone composite scaffold in repair of rabbit tibia defect

    Objective To investigate the effect of icarin/attapulgite/collagen type Ⅰ/polycaprolactone (ICA/ATP/Col Ⅰ/PCL) composite scaffold in repair of rabbit tibia defect. Methods The ICA/20%ATP/Col Ⅰ/PCL (scaffold 1), ICA/30%ATP/Col Ⅰ/PCL (scaffold 2), 20%ATP/Col Ⅰ/PCL (scaffold 3), and 30%ATP/Col Ⅰ/PCL (scaffold 4) composite scaffolds were constructed by solution casting-particle filtration method. The structure characteristics of the scaffold 2 before and after cross-linking were observed by scanning electron microscopy, and the surface contact angles of the scaffold 2 and the scaffold 4 were used to evaluate the water absorption performance of the material. The in vitro degradation test was used to evaluate the sustained-release effect of the scaffold 2. Thirty male Japanese white rabbits, weighing (2.0±0.1) kg, were randomly divided into groups A, B, C, D, and E, 6 in each group. After making a 1 cm- diameter bilateral tibial defects model, group A was the defect control group without any material implanted. Groups B, C, D, and E were implanted with scaffolds 3, 4, 1, and 2 at the defect sites, respectively. At 4, 8, and 12 weeks after operation, the repairing effects of 4 scaffolds were observed by gross observation, histological observation of HE and Masson staining, and immunohistochemical staining of osteogenic specific transcription factor (runt-related transcription factor 2, RUNX2), osteogenic related transcription factor [Osterix (OSX), Col Ⅰ, osteopontin (OPN)]. Results Scanning electron microscopy observation showed that the scaffolds were all porous. The structure of the material was loose before and after cross-linking. The surface contact angle showed that the scaffold was hydrophobic, and the scaffold 2 was more hydrophobic than scaffold 4. The sustained-release effect in vitro showed that the drug could be released in a micro and long-term manner. In the animal implantation experiment, the gross observation showed that the defects were significantly smaller in groups D and E than in groups A, B, and C at 4 and 12 weeks after operation. HE and Masson staining showed that the defect of group A was full of connective tissue at 4 weeks after operation, a large number of fibers were seen in groups B and C, and the new bone formation was observed in groups D and E. The increase of new bone was observed in each group at 8 weeks after operation. The defect of group A was still dominated by connective tissue at 12 weeks after operation, and a small amount of new bone tissue was observed in groups B and C, and a large number of new bone tissue was observed in groups D and E, especially in group E, and most of the materials degraded. Immunohistochemical staining showed that the expressions of RUNX2 and OSX in the new tissues of groups D and E were significantly higher than those of the other groups at 4 weeks after operation. The expression of RUNX2 decreased at 8 and 12 weeks after operation. After 8 weeks and 12 weeks, the expressions of Col Ⅰand OPN increased than in 4 weeks. And the expressions of Col Ⅰ and OPN in the new tissues of groups D and E were significantly more than those of the other groups. Conclusion ICA/ATP/Col I/PCL composite scaffolds have good porosity and biocompatibility, can promote bone formation, and have good bone regeneration and repair effect.

    Release date:2019-08-23 01:54 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content