Objective To evaluate effects of three-dimensional (3D) visualized reconstruction technology on short-term benefits of different extent of resection in treating hepatic alveolar echinococcosis (HAE) as well as some disadvantages. Methods One hundred and fifty-two patients with HAE from January 2014 to December 2016 in the Department Liver Surgery, West China Hospital of Sichuan University were collected, there were 80 patients with ≥4 segments and 72 patients with ≤3 segments of liver resection among these patients, which were designed to 3D reconstruction group and non-3D reconstruction group according to the preference of patients. The imaging data, intraoperative and postoperative indicators were recorded and compared. Results The 3D visualized reconstructions were performed in the 79 patients with HAE, the average time of 3D visualized reconstruction was 19 min, of which 13 cases took more than 30 min and the longest reached 150 min. The preoperative predicted liver resection volume of the 79 patients underwent the 3D visualized reconstruction was (583.6±374.7) mL, the volume of intraoperative actual liver resection was (573.8±406.3) mL, the comparison of preoperative and intraoperative data indicated that both agreed reasonably well (P=0.640). Forty-one cases and 38 cases in the 80 patients with ≥4 segments and 72 patients with ≤3 segments of liverresection respectively were selected for the 3D visualized reconstruction. For the patients with ≥4 segments of liver resection, the operative time was shorter (P=0.021) and the blood loss was less (P=0.047) in the 3D reconstruction group as compared with the non-3D reconstruction group, the status of intraoperative blood transfusion had no significant difference between the 3D reconstruction group and the non-3D reconstruction group (P=0.766). For the patients with ≤3 segments of liver resection, the operative time, the blood loss, and the status of intraoperative blood transfusion had no significant differences between the 3D reconstruction group and the non-3D reconstruction group (P>0.05). For the patients with ≥4 segments or ≤3 segments of liver resection, the laboratory examination results within postoperative 3 d, complications within postoperative 90 d, and the postoperative hospitalization time had no significant differences between the 3D reconstruction group and the non-3D reconstruction group (P>0.05). Conclusion 3D visualized reconstruction technology contributes to patients with HAE ≥4 segments of liver resection, it could reduce intraoperative blood loss and shorten operation time, but it displays no remarkable benefits for ≤3 segments of liver resection.
ObjectiveTo investigate the risk factors affecting severe postoperative complications (Clavien-Dindo classification Ⅲa or higher) in patients with end-stage hepatic alveolar echinococcosis (HAE) underwent ex vivo liver resection and autotransplantation (ELRA), and to develop a nomogram prediction model. MethodsThe clinical data of end-stage HAE patients who underwent ELRA at the West China Hospital of Sichuan University from January 2014 to June 2024 were retrospectively analyzed. The logistic regression was used to analyze the risk factors affecting severe postoperative complications. A nomogram prediction model was established basing on LASSO regression and its efficiency was evaluated using receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis. Simultaneously, a generalized linear model regression was used to explore the preoperative risk factors affecting the total surgery time. Test level was α=0.05. ResultsA total of 132 end-stage HAE patients who underwent ELRA were included. The severe postoperative complications occurred in 47 (35.6%) patients. The multivariate logistic analysis results showed that the patients with invasion of the main trunk of the portal vein or the first branch of the contralateral portal vein (type P2) had a higher risk of severe postoperative complications compared to those with invasion of the first branch of the ipsilateral portal vein (type P1) [odds ratio (OR) and 95% confidence interval (CI)=8.24 (1.53, 44.34), P=0.014], the patients with albumin bilirubin index (ALBI) grade 1 had a lower risk of severe postoperative complications compared to those with grade 2 or higher [OR(95%CI)=0.26(0.08, 0.83), P=0.023]. Additionally, an increased total surgery time or the autologous blood reinfusion was associated with an increased risk of severe postoperative complications [OR(95%CI)=1.01(1.00, 1.01), P=0.009; OR(95%CI)=1.00(1.00, 1.00), P=0.043]. The nomogram prediction model constructed with two risk factors, ALBI grade and total surgery time, selected by LASSO regression, showed a good discrimination for the occurrence of severe complications after ELRA [area under the ROC curve (95%CI) of 0.717 (0.625, 0.808)]. The generalized linear regression model analysis identified the invasion of the portal vein to extent type P2 and more distant contralateral second portal vein branch invasion (type P3), as well as the presence of distant metastasis, as risk factors affecting total surgery time [β (95%CI) for type P2/type P1=110.26 (52.94, 167.58), P<0.001; β (95%CI) for type P3/type P1=109.25 (50.99, 167.52), P<0.001; β (95%CI) for distant metastasis present/absent=61.22 (4.86, 117.58), P=0.035]. ConclusionsFrom the analysis results of this study, for the end-stage HAE patients with portal vein invasion degree type P2, ALBI grade 2 or above, longer total surgery time, and more autologous blood transfusion need to be closely monitored. Preoperative strict evaluation of the first hepatic portal invasion and distant metastasis is necessary to reduce the risk of severe complications after ELRA. The nomogram prediction model constructed based on ABLI grade and total surgery time in this study demonstrates a good predictive performance for severe postoperative complications, which can provide a reference for clinical intervention decision-making.
Objective To understand the advances in animal model and basic research of associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), and to provide new ideas for basic research and clinical application of ALPPS. Methods The literatures on the basic research and animal models of ALPPS were analyzed and reviewed. Results By March 2018, there were 19 articles related to ALPPS animal models published, including 11 rat model articles, 4 mouse model articles, 2 pig model articles, 1 rabbit model article, and 1 sheep model article. These models of ALPPS were mainly simulated in normal liver background (16 articles), only 2 mouse model of colorectal liver metastasis and 1 rat model of ALPPS under the sclerotic liver background on Chinese article. In cases of rat’s models, portal blood flow deprivation of 20%–90% was finished by portal vein ligation, and the liver was localized and segmented according to the ischemic line and the ligaments of the liver, and the liver partition was mostly sutured and electrocoagulated to stop bleeding. In the above models, remnant liver hyperplasia was observed after surgery. The main causes of hyperplasia were serum cytokines-mediated [hepatocyte growth factor (HGF), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and so on] enhancement of proliferative gene, and secondly preservation of the portal vein lobes to increase blood volume and to accelerate liver proliferation. ConclusionsThe animal model is the main tool to study the safety of ALPPS and liver regeneration, but there are still few studies in the models with liver cirrhosis and liver tumors. The mechanism of liver regeneration after ALPPS is still unclear, and more basic experiments and clinical cases are needed for further study.
ObjectiveTo explore the reasonable and feasible safe distance for radical resection of hepatic alveolar echinococcosis (HAE). MethodsLiver samples were collected prospectively from 20 HAE patients (from Jan. 2019 to Jun. 2019) undergoing liver resection in West China Hospital of Sichuan University. A total of three samples containing lesion and adjacent liver tissue were collected from each patient, which were divided into lesion group, 0 to0.5 cm liver tissue group (contained 0.5 cm), 0.5 to 1.0 cm liver tissue group (contained 1.0 cm), 1.0 to 1.5 cm liver tissue group (contained 1.5 cm), and 1.5 to 2.0 cm liver tissue group (contained 2.0 cm). Comparisons of the Cox1 expressionand the liver fibrosis area between HAE lesion and adjacent liver tissues were performed. ResultsBoth expression of Cox1 and fibrosis area in HAE lesion were significantly higher than those in the adjacent liver tissues (P<0.000 1). However, there was no significant difference among the four kinds of adjacent liver tissues (P>0.05). There was a significant positive correlation between the expression of Cox1 and the fibrosis area both in HAE lesion and adjacent liver tissues (P<0.05). ConclusionsBoth the expression of Cox1 and degree of the liver fibrosis are significant higher in HAE lesion comparing to adjacent liver tissues, however, no significant difference is found among adjacent liver tissues. Consequently, a safe distance of 0.5 cm may be reasonable and feasible on the basis of the criteria for sample collection in the study.
Hepatic alveolar echinococcosis (HAE) is a severe zoonotic disease caused by Echinococcus multilocularis, primarily affecting the liver. Due to its insidious nature, the patients are often diagnosed at advanced stage, posing significant treatment challenges. We comprehensively examines the progress in surgical techniques for HAE management, focusing on various strategies across different disease stages. For the patients with early-stage HAE, ablation therapy has emerged as an effective treatment option. In the moderate to advanced cases, numerous surgical techniques and innovative approaches have been introduced, including laparoscopic surgery and liver transplantation, with particular emphasis on ex vivo liver resection and autotransplantation. These advancements offer more effective treatment options for the patients with advanced HAE. However, significant challenges persist, notably the preservation of adequate liver function while achieving complete lesion removal. Future research should prioritize the exploration and optimization of existing surgical methods, especially for advanced HAE cases. This includes refining surgical techniques through precise preoperative evaluation and staging, as well as developing novel surgical approaches to enhance safety and efficacy. Furthermore, multicenter and long-term follow-up prospective studies are crucial for validating the effectiveness of new surgical techniques and strategies. Through these concerted efforts, it is anticipated that the survival rates and quality of life for HAE patients will significantly be improved, marking a new era in the management of this complex disease.
Objective To explore feasibility and safety of ex vivo liver resection and autotransplantation in treating end-stage hepatic alveolar echinococcosis combined with secondary cavernous transformation of portal vein. Methods The patient was diagnosed with the end-stage hepatic alveolar echinococcosis combined with secondary cavernous transformation of portal vein. The ultrasonography, computed tomography, and magnetic resonance imaging were used to access the characteristics of the lesions and the extent of involvement of the portal vein and its branches. The liver model was reconstructed using a three-dimensional imaging data analysis system (EDDA Technology, Inc. USA), the remnant liver volume and the extent of involvement of the first hepatic hilum were recorded. Then the multidisciplinary team repetitively discussed the risks and procedures involved in the surgery. Finally, the ex vivo liver resection and autotransplantation was proposed. Results The preoperative evaluation showed the patient had a large intrahepatic lesion which severely invaded the retrohepatic inferior vena cava, the right hepatic vein, and the middle hepatic vein and were completely occluded, the left hepatic vein was partially invaded, and the portal vein was spongiform. The remnant liver volume was 912 mL, the ratio of residual liver volume to standard liver volume was 0.81. The preoperative liver function Child-Pugh score was grade A. The ex vivo liver resection and autotransplantation was successfully managed according to the expected schedule. The autografts (made by patient’s great saphenous vein) were used to reconstruct the hepatic vein and portal vein, and the retrohepatic inferior vena cava was not reconstructed. The patient recovered well and was discharged on day 20 after the operation. Conclusions Ex vivo liver resection and autotransplantation could successfully be applied in treating patient with end-stage hepatic alveolar echinococcosis combined with secondary cavernous transformation of portal vein. Adequate preoperative assessment and management of the first hepatic hilum are key to this operation.
Objective To summarize the methods, safety, and efficacy of the ex vivo liver resection followed by autotransplantation in the treatment of advanced hepatic alveolar echinococcosis (HAE). Method A retrospective analysis of clinical data and follow-up data in 21 cases who received ex vivo liver resection followed by autotransplantation in the treatment of HAE from February 2014 to December 2016 in West China Hospital was performed. Results All the patients successfully underwent ex vivo liver resection followed by autotransplantation and no death happened during operation. The median weight of remnant liver was 701.4 g (360–1 300 g), the average operation time were 13.6 h (9.4–19.5 h), the anhepatic phase time were 180–455 min with median of 314 min. The average of intraoperative blood loss were 2 379 mL (1 200–6 000 mL). The average of patients entered red blood cell suspension were 10.6 u (0–39.5 u), the average of fresh frozen plasma were 1 377 mL (0–6 050 mL) , of which 7 patients received autologous blood transfusion, with average of 1 578 mL (500–3 700 mL). The average of postoperative hospital stay were 23.5 days (4–51 days). Postoperative complications occurred in 12 patients during hospitalization, and 4 cases of postoperative complications were in grade Clavien-Dindo Ⅲ or above, 2 cases of grade Ⅴ (died). During the follow-up period, 19 patients were followed for a median of 16.2 months (3–38 months), no HAE recurrence or metastasis was found, only 1 patient were lost follow-up after surgery for 12 months. Massive ascites and hyponatremia were found in 1 patient who was diagnosis as left hepatic vein stenosis at the end of the 3 months after operation. The patient was cured after interventional treatment of hepatic vein stent implantation and angioplasty. Conclusions The ex vivo liver resection followed by autotransplantation provides radical treatment for patients with advanced HAE, but the surgery is difficult and has high risk of postoperative complications. The detailed preoperative evaluation, intraoperative pipeline reconstruction reasonably, and fine postoperative management can improve the patient’s survival, and reduce the rate of complications.