west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "Qiao Yilin" 2 results
  • Analysis of the positive rate of scanning laser ophthalmoscope in the retromode for different types of diabetic macular edema

    Objective To explore the positive rate of scanning laser ophthalmoscope in the retromode (RM-SLO) in different types of diabetic macular edema (DME), and to analyze its correlation with foveal thickness (CMT) and macular volume. MethodsFrom March to May 2021, 40 patients (65 eyes) were diagnosed as DME by fundus examination combined with optical coherence tomography (OCT) in Affiliated Eye Hospital of Wenzhou Medical University at Hangzhou were included in the study. All eyes underwent best corrected visual acuity (BCVA), OCT and RM-SLO fundus imaging examinations, 47 eyes underwent fluorescein fundus angiography (FFA) examination. RM-SLO fundus imaging examinations were performed with Mirante SLO, including retro mode illumination deviated right (RMDR) and retro mode illumination deviated left (RMDL). If one or more of the RMDR and RMDL of the examined patient can identify macular edema, RM-SLO was considered to be able to identify macular edema. The macular volume at CMT and 6 mm from the fovea was measured by OCT software. DME were divided into 3 types based on OCT images: diffuse retinal thinkening (DRT) type; cystoid macular edema(CME) type; serous retinal detachment (SRD) type, focal leakage type, diffuse leakage type and diffuse cystic leakage type. The consistency of RMDR and RMDL in the diagnosis of DME in RM-SLO fundus imaging was evaluated, as well as their positive rate in different classifications of DME. The correlation between the detection of macular edema by RM-SLO and the DME type, CMT and foveal volume, and the correlation between BCVA and edema type, CMT and macular volume were analyzed. ResultsAmong 65 eyes, the positive rates of RMDR and RMDL fundus imaging to detect DME were 46 (70.77%, 46/65) and 48 (73.85%, 48/65), respectively. There was good consistency in identifying DME (Kappa value=0.770; P<0.001). The positive rates of RMDR and RMDL fundus imaging DRT, CME and SRD type of DME were 42.11% (8/19), 57.89% (11/19), 77.78% (28/36), 77.78% (28/36), 100.00% (10/10), 90.00% (9/10), respectively. In the FFA classification of them, the positive rates of focal leakage, diffuse leakage and diffuse cystic leakage were 68.75% (11/16), 62.50% (10/16), 68.00% (17/25), 76.00% (19/25), 100.00% (6/6), 100.00% (6/6), respectively. The results of Spearman correlation analysis showed that whether RM-SLO could identify DME was associated with CMT and OCT classification (r=0.310, 0.365; P=0.120, 0.003); there was no correlation between FFA classification and macular volume (r=0.113, 0.117; P=0.449, 0.352). BCVA was correlated with CMT and macular volume (r=0.307, 0.269; P=0.013, 0.030), however, there was no significant correlation with OCT type, angiographic type (r=0.051, 0.175; P=0.684, 0.240). ConclusionThe diagnostic agreement of DME are good between RMDR, RMDL of RM-SLO image. DME of DRT type and patients with smaller CMT in OCT are difficult to identified by RM-SLO fundus imaging.

    Release date: Export PDF Favorites Scan
  • Parapapillary atrophy, choroidal vascularity index and their correlation in different degrees of myopia

    ObjectiveTo observe the peripapillary atrophy (PPA) and peripapillary choroidal vascularity index (CVI) in patients with different degrees of myopia and to analyze their correlations. MethodsA cross-sectional clinical study. From September 2021 to December 2021, 281 mypoic patients of 281 eyes treated in Eye Hospital of Wenzhou Medical University at Hangzhou were included in this study, and the right eye was used as the treated eye. There were 135 eyes in 135 males and 146 eyes in 146 females. The age was 28.18±5.78 years. The spherical equivalent refraction (SE) was -5.13±2.33 D. The patients were divided into three groups: low myopia group (group A, -3.00 D <SE≤-0.50 D), moderate myopia group (group B, -6.00 D≤SE≤-3.00 D);high myopia group (group C, SE<-6.00 D). The spherical equivalent refraction was statistically different among the three groups (H=241.353, P<0.05). All of the affected eyes were examined by swept-source optical coherence tomography. Combined with B-scan image,assessment and area measurement of β area, γ area (β-PPA and γ-PPA) were carried out on the en-face image. After binarization of the collected images, the nasal, superior, temporal and inferior CVI of the optic disc were calculated. For comparison between groups, one-way ANOVA was used for continuous variables with normal distribution, Kruskal-Wallis test was used for continuous variables with abnormal distribution, and categorical variables were used χ2 inspection. Linear regression analysis was used for the relationship between β-PPA and γ-PPA area and peripapillary CVI of different regions. Linear regression analysis was used to evaluate the relationships between the area of peripapillary atrophy and peripapillary choroidal vascularity index in different regions. ResultsThere was no statistical difference in the incidence of β-PPA among the three groups (χ2=4.672, P=0.097). The incidence of γ-PPA in group A was lower than that in group B anc C, and the difference was statistically different (χ2=33.053, P<0.001), in which both group A was lower than group B and C. Among the three groups, the area of β-PPA and γ-PPA was statistically significant (H=36.535, 39.503; P<0.001, 0.001); the β-PPA area of group A and B was lower than that of group C; the γ-PPA area was group A<group B<group C. Peripapillary CVI of different regions in group A, group B and group C was statistically significant (F=11.450, 5.037, 6.018, 4.489; P<0.05). The temporal CVI in group C was lower than that in group A and B; The inferior CVI of group C was lower than that of group A, and the superior and nasal CVI of group B and C were lower than that of group A. In multivariate analysis, SE (β=0.374, P<0.001), temporal CVI (β=-0.299, P<0.001) were correlated with the area of β-PPA (adjusted R2=296, P<0.001); AL (β=0.452, P<0.001), temporal CVI (β=-0.220, P<0.001) were correlated with the area of γ-PPA (adjusted R2=0.309, P<0.001). ConclusionsThe incidence and area of γ-PPA are increased in the higher degree of myopia group. The area of γ-PPA is positively correlated with the axial length, and both the area of β-PPA and γ-PPA are negatively correlated with temporal CVI.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content