【Abstract】 Objective To build nano-biomimetic tissue engineered blood vessel (NBTEBV) with nanotopology by using electrospinning (ELSP) technology. Methods Cony vascular endothel ial cell(VEC) on tubiform tooting in vitro was cultured. NBTEBV was built by use of multi-row nozzle with the suspension of cony vascular smooth muscle cell (VSMC) and mimic ECM (MECM) solution. NBTEBV was cultured with bioreactor in vitro . VEC and VSMC viabil ity and prol iferation were observed with MTT; and HE staining, scanning electron microscopy(SEM) observation and biomechanical test were carried out after 24 hours of static culture and 7 days of dynamic culture. Results After 7 days of culture, the length of NBTEBV was 57 mm, the external diameter was 4 mm and the thickness of wall was 0.4 mm. The NBTEBV’s color was white and the texture was even and flexible. MTT results indicated the viabil ity of cells cultured on NBTEBV for 7 days was normal(8.9 × 106 /mg, 3.5 ×105/mg for 24 hours). SEM and HE staining indicated that the topologic character of NBTEBV was similar to that of the naturalblood vessel. The NBTEBV showed a network scaffolds structure with 100 nm thick fiber and 600 nm aperture. The HE stainingresult showed that the NBTEBV was composed of VEC and VSMC by layer. Vascular mechanical results showed that the NBTEBVultimate hydrostatic pressure was 950 mmHg, the compl iance of the NBTEBV under physio-pressure (110/70 mmHg) was 3.0%; the ultimate tensile strength of 20 mm × 5 mm tissue sl ice was 18.5 MPa. Conclusion The technology of ELSP can use VSMC and MECM scaffold simultaneously to build tissue engineered blood vessel with nanotopology mimic native blood vessel.
【Abstract】 Objective To design a novel small-cal iber vascular graft using a decellularized allogeneic vascularscaffold pre-loaded with bFGF. Methods The decellularized canine common carotid were obtained by a detergent-enzymatic procedure, then the scaffolds were covalently l inked with heparin and pre-loaded with bFGF, the amount of binding bFGF and releasing curve were assayed by ELISA. Canine BMSCs expanded in vitro were seed on the scaffolds to observe the effects of binding bFGF on prol iferation. Both bFGF pre-loaded and non-pre-loaded decellularized grafts were implanted in canines as carotid artery interposition for 8 weeks, the patency was examined by digital subtraction angiography and histological method. Results Histology and electron microscopic examination of the decellularized scaffolds showed that cellular components were removed completely and that the extracellular matrix structure remained intact. The amount of binding bFGF positively related to the concentration of bFGF. There was a significant difference in the amount of binding bFGF between two different scaffoldsthroughout all bFGF concentrations(P lt; 0.05), and up to 100 ng/mL, the local and sustained release of bFGF from the heparin treated scaffolds were assayed up to 20 days. Additionally, MTT test showed the bFGF-preloaded scaffolds significantly enhanced the prol iferation of seeded BMSCs in vitro compared with non-bFGF-preloaded scaffolds at 3 days after seeding and thereafter(P lt; 0.01). Furthermore, in vivo canine experiments revealed that all 8 bFGF-pre-loaded scaffolds remained patent after 8 weeks of implantation, and host cell l ined the lumen and populated the wall. Only 1 non-bFGF-pre-loaded scaffold was patent, and the other 7 grafts were occluded because of thrombsus formation. Conclusion This study provides a new strategy to develop a small diameter vascular graft with excellent biocompatibil ity and high patency rate.