west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Receptors, purinergic" 2 results
  • 腺苷抑制P2X7和N-甲基-D-天冬氨酸受体诱导的视网膜神经节细胞死亡

    Objective To evaluate the inhibiting effect of adenosine on rat retinal ganglion cells (RGC) death induced by P2X7 and N-methyl-D-aspartate (NMDA) receptor. Methods (1) Long-Evan neonatal rats were back labeled with aminostilbamidine to identify RGC. The viability of RGC affected by P2X7 excitomotor BzATP (50 mu;mol/L), glutamate receptor excitomotor NMDA (100 mu;mol/L) and adenosine (300 mu;mol/L) was detected. (2) RGC from the retinae of unlabeled neonatal rats were cultured in vitro. After labeled with Fura-2 methyl acetate, an intracellular calcium indicator, the effect of BzATP, NMDA and adenosine on intracellular Ca2+ level was detected byCa2+ imaging system. Results Both BzATP (50 mu;mol/L) and NMDA(100 mu;mol/L) could kill about 30% of the RGC. Cell death was prevented by adenosine (300 mu;mol/L) with the cell viability increased from (68.9plusmn;2.3)% and (69.9plusmn;3.2)% to (91.2plusmn;3.5)% (P<0.001) and (102.1plusmn;3.9)% (P<0.001), respectively. BzATP (50 mu;mol/L) led to a large, sustained increase of intracellular Ca2+ concentration to (1183plusmn;109) nmol/L. After the adenosine intervened, Ca2+ concentration increased slightly to (314plusmn;64) nmol/L (P<0.001). Conclusion Adenosine may prevent RGC death and increase of intracellular Ca2+ concentration from P2X7and NMDA receptor stimulation. (Chin J Ocul Fundus Dis, 2007, 23: 133-136)

    Release date:2016-09-02 05:48 Export PDF Favorites Scan
  • P2X7 receptor and relationship with the death of retinal neurons

    Retinal neuronal cells are crucial in the formation of vision. Injury or death of these cells may lead to irreversible damage to visual function due to their low regenerative capacity. The P2X7 receptor is a trimeric adenosine triphosphate (ATP)-gated cation channel. Recent studies have shown that P2X7 receptor plays a role in retinal neuronal death. In a series of animal models, when exposed to conditions of hypoxia or ischemia, elevated ocular pressure, trauma and exogenous agonists, P2X7 receptor activated by extracellular ATP can cause death of retinal neuronal cells such as retinal ganglion cells and photoreceptor cells through direct or indirect pathways. Blocking the expression and function of P2X7 receptor by its specific antagonist and gene knocking-out, the loss of retinal neuronal cells is significantly attenuated. P2X7 receptor may become a potential novel neuroprotective target for diseases related to the loss of retinal neurons.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content