Objective To construct the recombinant adeno-associated virus vector with human bone morphogenetic protein 4 gene(AAV-hBMP4). Methods The hBMP-4 gene primer was designed basing on the corresponding gene sequence in GenBank. EcoR I site was introduced into the upstream of the primer and Sal Ⅰ site into downstream. The hBMP-4 gene was amplifiedwith the template of EX-A0242-M01-hBMP-4, then was cloned into pUC18 vectorto construct recombinant plasmid pUC18-hBMP-4. The plasmids pUC18-hBMP-4 and plasmid pSNAV cut by EcoR Ⅰ and Sal Ⅰenzyme, the fragments were collected and linked with T4 DNA ligase at 16℃ over night, recombinant plasmid pSNAVhBMP-4 was obtained. The recombinant plasmid was then transfected into BHK21 cells using Lipofectamine TM2000. The G418 resistant cells were obtained consequently. Thesecells were infected with HSV1-rc/△UL2 which has the function of packaging andcopying the recombinant AAV. After purification, the construction of recombinant AAV-hBMP-4 was completed. Results The construction of the recombinant pSNAV-hBMP-4 was confirmed by PCR electrophoresis and digestion with restriction enzyme. The gene sequence in the recombinant pSNAV-hBMP-4 wascorrect. The virus titer was about 1.5×1012 μg/ml.The purity of the virus was more than 95% using the SDSPAGE method. Conclusion With this method, high virus titers and purity of AAV-hBMP-4 can be acquired successfully and it is useful to bone tissue engineering.
Objective To investigate the effects of the recombinanthuman bone morphogenetic protein 2 (rhBMP-2) and/or the osteogenic agents on proliferation and expression of the osteoblast phenotype differentiation of the SD rat mesenchymal stem cells(MSCs). Methods The rat MSCs were cultured in vitro and were randomly divided into the experimental groups(Groups A-I) and the control group. In the experimental group, MSCs were induced by rhBMP2 in different doses (10, 50, 100 and 200 μg/L) in Groups BE, the osteogenic agent alone (Group A) and by the combined use of rhBMP-2 [in different doses (10,50, 100 and 200 μg/L)] and the osteogenic agent in Groups F-I. The MTT colorimetric assay was used to evaluate the proliferation, and the activities of alkaline phosphatase (ALP) and osteocalcin (OC) were observed at 3, 6, 9, 12 days, respectively. Results The inverted phase contrast microscopy showed that MSCs by primary culture for 12 hours were adhibited, with a fusiform shape at 48 hours. At 4 days they were polygonal or atractoid, and were spread gyrately or radiately at 6 days. At 10 days, they were spread at the bottom of the bottle.The statistical analysis showed that the expression of the osteoblast phenotype differentiation of MSCs could be induced in the experimental groups. The proliferation of MSCs could be enhanced in a dosedependent manner in GroupsB-E. The expression of the osteoblast phenotype differentiation, which was tested by the activities of ALP and OC, was significantly higher in Groups F-I than in Groups A-E. Conclusion The combined use of rhBMP-2 and the osteogenic agents can enhance the MSC proliferation and induce an expressionand maintenance of the osteoblast phenotype differentiation of the rat MSCs.
Objective To investigate bone regeneration of the cell-biomaterial complex using strategies of tissue engineering based on cells.Methods Hydroxyapatite/collagen (HAC) sandwich composite was produced to mimic the natural extracellular matrix of bone, with type Ⅰ collagen servingas a template for apatite formation. A three-dimensional ploy-porous scaffoldwas developed by mixing HAC with poly(L-lactic acid) (PLA) using a thermally induced phase separation technique (TIPS). The rabbit periosteal cells were treated with 500 ng/ml of recombinant human bone morphogenetic protein 2(rhBMP-2), followed by seeded into pre-wet HAC-PLA scaffolds. Eighteen 3-month nude mice were implanted subcutaneously cell suspension (groupA, n=6), simple HAC-PLA scaffold (group B, n=6) and cell-biomaterial complex(group C, n=6) respectively.Results Using type Icollagen to template mineralization of calcium and phosphate in solution, we get HAC sandwich composite, mimicking the natural bone both in compositionand microstructure. The three dimensional HAC-PLA scaffold synthesized by TIPShad high porosity up to 90%, with pore size ranging from 50 μm to 300 μm. SEMexamination proved that the scaffold supported the adhesion and proliferation of the periosteal cells. Histology results showed new bone formation 8 weeks after implantation in group C. The surface of group A was smooth without neoplasma. Fibrous tissueinvasion occured in group B and no bone and cartilage formations were observed.Conclusion The constructed tissue engineering bone has emerged as another promising alternative for bone repair.
Objective To study in vitro sustained release behaviour of the recombinant human bone morphogenetic protein 2(rhBMP-2) from the sample which porous calcium phosphate cement (PCPC) was combined with rhBMP-2, and to evaluate the effect of PCPC/rhBMP-2 composite on repairing bone defect in the animalstudy.Methods rhBMP-2 was absorbed into PCPC by vacuum-adsorption and freeze-dried at -40℃, the PCPC/rhBMP-2 enwrapped with chitosan as the experimental group, the pure PCPC/rhBMP-2 as the control group, then the sustained release ofrhBMP-2 from PCPC was determined in simulated body fluid (SBF) by UV-VIS spectrophotometer. At same time, the PCPC/rhBMP-2 composites with chitosan were implanted into the (4.2 mm×5.0 mm femora defects of rabbits, which were considered as the experimental group, whereas in the control group only PCPC was implanted. The effect of repairingbone defect was evaluated in the 4th and 8th week postoperatively by radiograph and histomorphology.Results The PCPC have a high absorption efficiency to rhBMP-2, and the release of rhBMP-2 was sustained release system. The release of rhBMP-2 from PCPC in the experimental group (99% after 350 hours) was slowerthan that in the control group (100% after 150 hours). In the experimental group, the radiological and histomorphological evaluations showed that theinterfaces between the materials and host bones became blurred both at 4th and 8th week. The implanted materials were partially absorbed, and the implanted areas exhibited the formation of new bone. In the control group, a little amount of new bones was observed. Conclusion The PCPC shows great clinical potential as a carrier for rhBMP-2. The PCPC/rhBMP-2 composite possesses much potentialities of osteoinductivity and the ability of repairing bone defect, so it can be used as a novel bone substitute clinically.
Objective To evaluate the bone regenerative potential of reconbinant human bone morphogenetic protein 2(rhBMP-2) / collagen on adult rat calvarial bone. Methods A tight subperiosteal pocket was produced under both sides ofthe temporal muscle in rats. rhBMP-2 / collagen was implanted in one side and collagen alone was implanted in the other side as control. The rats were sacrificed 2, 4 and 8 weeks after operation. The specimen was harvested and examined histologically. For morphometric analysis, the thickness of the temporal bone of both sides was measured and compared. Results The rhBMP-2 / collagen onlay implant resulted in active bone formation and the augmented bone was connected directly with the original bone, whereas the collagen alone resulted in neither bone nor cartilage production. The ossification process in the rhBMP-2 / collagen occurred directly through bone formation, similar to intramembranous ossification. Conclusion rhBMP-2 / collagen is an effective material as a biological onlay implant.
Objective To explore a novel nanometer biomaterial which could induce the regeneration of tooth tissues intell igently, and to evaluate the feasibil ity of using this kind of biomaterial as the scaffold for tooth tissue engineering by investigating the role it plays in tooth tissue engineering. Methods The scaffold for tooth tissue engineering containing recombinant human bone morphogenetic protein 2 (rhBMP-2) was prepared by mixing nanoscale β tricalcium phosphate (β-TCP)/collagen particles. Forty-six 8-10 weeks old specific pathogen free Sprague Dawley (SD)rats, including 34 females and 12 males, weighing 250-300 g, were involved in this study. Tooth germs were removed under a stereomicroscope from the mandible of newborn SD rat, then digested and suspended. Scanning electronic microscope (SEM), adhesion rate of cells, and MTT assay were used to evaluate the effects of the scaffold on the tooth germ cells cultured in vitro. The tissue engineered tooth germ which was constructed by tooth germ cells and scaffold was transplanted under SD rat’s kidney capsule as the experimental group (n=12); the tooth germ cells (cell-control group, n=12) or scaffold without cells (material-control group, n=4) were transplanted separately as control groups Specimens were harvested to perform general and histological observations at 4 and 8 weeks after transplantation. Results β-TCP/collagen showed a loose and porous appearance with soft texture and excellent hydrophil icity. Tooth germ cells grew well and could attach to the scaffold tightly 3 days after coculture. The adhesion rates of tooth germ cells were 27.20% ± 2.37%, 44.52% ± 1.87%, and 73.81% ± 4.15% when cocultured with scaffold for 4, 8, and 12 hours, respectively. MTT assay showed that the cell prol iferation status of experimental group was similar to that of the control group, showing no significant difference (P gt; 0.05). Some white calcified specimens could be harvested at 4-8 weeks after transplantation. At 4 weeks after transplantation some typical structures of dental cusp and enamel-dentin l ike tissues could be seen in the experimental group. Enamel-dentin l ike tissues also formed in some specimens of cell-control group, but they arranged irregularly. At 8 weeks after transplantation the enamel-dentin l ike tissue of experimental group exhibited a mature appearance and organized structure in comparison with that at 4 weeks. And mature enamel or dentin l ike tissue also could be seen in cell-control group. In contrast, there was no enamel or dentin l ike tissue in material-control group at 4 or 8 weeks after transplantation. Conclusion rhBMP-2 decorated β-TCP/collagen scaffold has good biocompatibil ity and can be used as a novel nanometer biomaterial, so it is a good choice in scaffolds for tooth tissue engineering.
Objective To investigate the possibility of differentiation of theisolated and cultured adipose-derived adult stem cells into chondrocytes, which is induced by the recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods The rabbit adipose tissue was minced and digested by collagenase Type Ⅰ. The adposederived adult stem cells were obtained and then they were cultured inthe micropellet condition respectively in the rhBMP-2 group, the rhTGF-β1 group, the combination group, and the control group for 14 days. The differentiation of the adiposederived stem cells into chondrocytes was identifiedby the histological methods including HE, Alcian blue, Von kossa, and immunohistochemical stainings. Results After the continuous induction by rhBMP-2 and continuous culture for 14 days, the HE staining revealed a formation of the cartilage lacuna; Alcian blue indicated that proteoglycan existed in the extracellular matrix; the immunohistochemical staining indicated that collagen Ⅱ was in the cellular matrix; and Von kossa indicated that the adipose-derived stem cells couldnot differentiate into the osteoblasts by an induction of rhBMP-2. Conclusion In the micropellet condition, the adipose-derived adult stemcells can differentiate into the chondrocytes, which is initially induced by rhBMP-2. This differentiation can provide a foundation for the repair of the cartilage injury.
Objective To investigate and compare the osteogenic potential of three kinds of calcium phosphate ceramic as carriers for recombinant human bone morphogenetic protein-2(rhBMP-2) in vivo.Methods BCPceramics (HA,TCP,HA/TCP) impregnated with rhBMP-2 (experimental groups) and without rhBMP-2(control groups) were implanted into 6 muscles pockets on the dorsum of 3month-old Wistar rabbits. The rabbits were sacrificed 2, 4 and 8 weeks after implantation and bone induction was estimated by alkaline phosphatase(ALP) activity measurement. The implants were also examined histologically and histomorphometrically by HE staining and computerized graphical analysis. Results The ALPactivity of implants withrhBMP-2 was higher than that of control groups(P<0.05), but there was no difference between 2 and 4 weeks in experimental groups. In all experimental groups,theimplants exhibited that new bone formation increased with the lapse of time. The amount of new bone formation is more in -HA/rhBMP-2 group than in the other two group in the 2nd and 4th weeks, but there was no difference between them (P>0.05).In the 8th week, the amount of bone formation was most in HA/TCP with -rhBMP-2, and was more than that in the 2nd and 4th weeks. Whereas in control groups, there was only fibrous connective tissue. Conclusion HA/TCP- is a good carriers of rhBMP-2 and can be used as bone substitutes clinically.
Objective To investigate a new grafting material of bone xenograft with b bone inductive and conductive capacity. Methods Based on successful clinical application of the reconstituted bone xenograft (RBX), a new xenograft was made by combining recombinant human bone morphogenetic protein-2 (rhBMP-2) with antigen-free bovine cancellous bone (BCB). Sixty male BALB/C mice aged 4 weeks were divided into study group of 30 and control group of 30 randomly. rhBMP-2 / BCB was implanted in the left thigh muscle pouch in the study group andBCB in the control group. The mice were sacrificed at 7 d, 14d and 21d after implantation. Inductivity of rhBMP-2/BCB was detected by histological observation and biochemical determination of the samples. Results Histological examinationshowed that rhBMP-2/BCB induced chondrogenesis on the 7th day, with woven boneformed on the 14th day, and lamellar bone and marrow on the 21st day, while BCBfailed to induce chondrogenesis or osteogenesis on the 7th, 14th and 21st days. The alkaline phosphatase activities and calcium content in study group were higher than those in control group with significant difference (P<0.01). Conclusion rhBMP-2/BCB is an ideal grafting material with b bone inductive and conductive capacity without evoking immune reaction.
Objective To explore the in vitro osteogenesis of the chitosan-gelatin scaffold compounded with recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods Recombinant human BMP-2 was compounded with chitosan-gelatin scaffolds by freezedrying. 2T3 mouse osteoblasts and C2C12 mouse myoblasts were cultured and seeded onto the complexes at thedensity of 2×104/ml respectively. The complexes were divided into two groups. Group A: 2T3 osteoblasts seeded, consisted of 14 rhBMP-2 modified complexes. Each time three scaffolds were taken on the 3rd, 7th, 14th, and 21st day of the culturing, then the expression of osteocalcin gene (as the marker of bone formation) in adherent cells was detected by semiquantitative RT-PCR with housekeeping gene β-tubulin as internalstandard. The other 2 rhBMP-2 modified complexes were stopped being cultured on 14th day after cell seeding, and the calcification of the complexes was detected by Alizarian Red S staining. Five scaffolds without rhBMP-2 modification as the control group A, they were stopped being cultured on 14th day after cell seeding. Of the 5 scaffolds, 3 were subjected tothe detection of osteocalcin gene expression and 2 were subjected to the detection of calcification. Group B: C2C12 myoblasts seeded, had equal composition andwas treated with the same as group A. Besides these 2 groups, another 2 rhBMP2 modified complexes with 2T3 osteoblasts seeding were cultured for 3 days and then scanned by electron microscope (SEM) as to detect the compatibility of the cell to the complex. ResultsSEM showed that cells attached closely to the complex and grew well. In group A, the expression level(1.28±0.17)of osteocalcin gene in cells on rhBMP-2 modified complexes was higher than that (0.56±0.09) of the control group A, being statistically -significantly different(P<0.05) control. C2C12 myoblasts which did not express osteocalcin normally could also express osteocalcin after being stimulated by rhBMP-2 for at least 7 days. Alizarian Red S staining showed that there was more calcification on rhBMP-2 modified complexes in both groups. There were more calcification in the group compounded with rhBMP-2, when the groups were seeded with the same cells. Conclusion The complexmade of rhBMP-2 and chitosan-gelatin scaffolds has b osteogenesis ability in vitro.