west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Reperfusion injury/drug therapy" 2 results
  • Effect of Crocin on structure and the expression of tumor necrosis factor-α and interleukin-1β in rat retina after injury by ischemia-reperfusion

    ObjectiveTo observe the effect of Crocin on structure and the expression of tumor necrosis factor-alpha; (TNF-alpha;) and interleukin-1beta; (IL-1beta;) in rat retina after injury by ischemia-reperfusion. Methods A total of 80 Sprague-Dawley male rats at the age of 8 -10 weeks were divided into control group, model group, low-dose Crocin group and high-dose Crocin group, with 20 rats in each group. The rats of control group were not treated. The rats in model, low-dose Crocin and high-dose Crocin group were induced with normal saline by anterior chamber perfusion creating a retinal ischemia-reperfusion (RIR) model. The rats of the low-dose Crocin and highdose Crocin group received intraperitoneal injection with different doses of Crocin solution (5 mg/kg, or 50 mg/kg) 30 minutes prior to ischemic injury and one time per day after successful RIR. Optical microscopy was used to observe the retinal structure. Enzymelinked immunosorbent assay (ELISA) was used to measure the expression of TNF-alpha; and IL-1beta; 6, 12, 24 and 48 hours after RIR. ResultsThe retinal structure of control group was normal. Pathological changes were found in the RIR model and low-dose Crocin group, such as retinal edema, disorganized structure and loosely packed cells. The degree of pathological changes in lowdose Crocin group was less than the RIR model group. The retinal structure of high-dose Crocin group was similar to the control group. The expression of TNF-alpha; was the highest at 24 hours after modeling, while the expression of IL-1beta; was the highest at 12 and 48 hours after RIR modeling. Six, 12, 24 and 48 hours after RIR modeling, compared with the control group, the TNF-alpha; expression of model (t=5.42, 7.94, 9.32, 9.18;P<0.05 ), low-dose Crocin (t=3.94, 4.12, 4.98, 3.84;P<0.05) and high-dose Crocin group (t=2.13, 2.34, 2.96, 2.78;P>0.05) were increased. Compared with the RIR model group, the TNF-alpha; expression of low-dose Crocin (t=3.95, 4.56, 4.01, 5.12) and high-dose Crocin group (t=5.23, 7.65, 7.74, 7.63) was decreased. Compared with the control group, the IL-1beta; expression of model (t=7.23, 7.87, 7.15, 15.60), low-dose Crocin (t=5.65, 5.10, 5.54, 6.87;P<0.05) and high-dose Crocin group (t=4.38, 5.21, 4.56, 4.75) was increased (P<0.05). Compared with the model group, the IL-1beta; expression of low.dose Crocin group was decreased significantly 48 hours after RIR modeling (t=7.56,P<0.05); but it decreased significantly at each time point in high-dose Crocin group (t=6.94, 5.36, 6.05, 10.50;P<0.05). Conclusion Crocin can improve the retinal pathologic changes, while down-regulating TNF-alpha; and IL-1beta; expression in RIR rats.

    Release date:2016-09-02 05:22 Export PDF Favorites Scan
  • The effect of melatonin on retinal apoptosis in rats with ischemia-reperfusion injury

    Objective To observe the effect of melatonin (MT) on retinal apoptosis in rats with ischemia-reperfusion injury (RIRI). Methods A total of 54 male healthy Sprague-Dawley adult rats were randomly divided into the normal control (CON) group (6 rats), RIRI group (24 rats) and MT group (24 rats). The rats of RIRI and MT group were induced using suture-occluded methods to establish RIRI model. The rats of MT group were injected with MT in the left carotid artery 30 minutes after RIRI, and RIRI group was injected with the same amount of saline. On 6, 24 hours and 3, 7 days after RIRI, the morphological changes of retina were evaluated by hematoxylin and eosin (HE) staining; the effects of MT on retinal cell apoptosis and Nrf2, HO-1 proteins were examined by immunohistochemistry staining. The correlation between active Caspase-3 and Nrf2 protein, active Caspase-3 and HO-1 protein in MT group were analyzed by linear regression analysis. Results HE staining results showed that the morphology of retinal cells was regular and retinal cells were well arranged in the CON and MT group. In the RIRI group, both the thickness of inner retinal layer and the number of retinal ganglion cells (RGC) were decreased. On 6, 24 hours and 3, 7 days after RIRI, the thickness of inner retinal layer (F=16.710, 62.303, 68.389, 57.132; P<0.01) and RGC number (F=24.250, 11.624, 14.155, 32.442; P<0.05) in MT group were more than those in RIRI group. Immunohistochemistry staining results showed that less active Caspase-3+ cells were observed in MT group as compared with those in RIRI group at each time points (F=49.118, 134.173, 76.225, 18.385; P<0.01). There were more Nrf2+ (F=11.041, 31.480, 59.246, 6.740; P<0.05) and HO-1+ cells (F=128.993, 21.606, 51.349, 8.244; P<0.05) in MT group as compared with those in RIRI group at each time points. Linear regression analysis results showed that the difference of active Caspase-3+ cells were all linearly correlated with the Nrf2+ cells and HO-1+cells in the MT group (r2=0.810, 0.730; P<0.01). Conclusion MT could reduce retinal cell apoptosis in RIRI rats, and its mechanism may be associated with increased Nrf2 and HO-1 expression, reduced active Caspase-3 expression.

    Release date:2018-01-17 03:16 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content