ObjectiveTo reveal impairments in the perceptual networks in tuberous sclerosis complex (TSC) with epilepsy by functional connectivity MRI (fcMRI). MethodsThe fcMRI-based independent component analysis (ICA) was used to measure the resting state functional connectivity in nine TSC patients with epilepsy recruited from June 2010 to June 2012 and perceptual networks including the sensorimotor network (SMN), visual network (VN), and auditory network (AN) were investigated. The correlation between Z values in regions of interest (ROIs) and age of seizure onset or duration of epilepsy were analyzed. ResultsCompared with the controls, the TSC patients with epilepsy presented decreased functional connectivity in primary visual cortex within the VN networks and there were no increased connectivity. Increased connectivity in left middle temporal gyrus and inferior temporal gyrus was found and decreased connectivity was detected in right inferior frontal gyrus within AN networks. Decreased connectivity was detected at the right inferior frontal gyrus and the increase in connectivity was found in right thalamus within SMN netwoks. No significant correlations were found between Z values in ROIs including the primary visual cortex within the VN, right thalamus and inferior frontal gyrus within SMN, left temporal lobe and right inferior frontal gyrus within AN and the duration of the disease or the age of onset. ConclusionFhere is altered (both increased and decreased) functional connectivity in the perceptual networks of TSC patients with epilepsy. The decreased functional connectivity may reflect the dysfunction of correlative perceptual networks in TSC patients, and the increased functional connectivity may indicate the compensatory mechanism or reorganization of cortical networks. Our fcMRI study may contribute to the understanding of neuropathophysiological mechanisms underlying perceptual impairments in TSC patients with epilepsy.
Nowadays, an increasing number of researches have shown that epilepsy, as a kind of neural network disease, not only affects the brain region of seizure onset, but also remote regions at which the brain network structures are damaged or dysfunctional. These changes are associated with abnormal network of epilepsy. Resting-state network is closely related to human cognitive function and plays an important role in cognitive process. Cognitive dysfunction, a common comorbidity of epilepsy, has adverse impacts on life quality of patients with epilepsy. The mechanism of cognitive dysfunction in epileptic patients is still incomprehensible, but the change of resting-state brain network may be associated with their cognitive impairment. In order to further understand the changes of resting-state network associated with the cognitive function and explore the brain network mechanism of the occurrence of cognitive dysfunction in patients with epilepsy, we review the related researches in recent years.