Objective To investigate the feasibility of gene transfection into retinal pigment epithelial (RPE) cells and photoreceptors (PRs) in vivo electroporation. Methods A total of 147 Sprague-Dawley (SD) rats were divided into 5, 10, 15, 20, 25, 30 and 35 V group according to different voltage. The right eyes of rats underwent the injection of eukaryotic expressive plasmid of enhanced green fluorescent protein (EGFP) pEGFP-N1 into subretinal space as experimental eyes; the left eyes were injected with TE buffer as control eyes. Each group was divided into RPE and RP subgroups according to different transfection direction. There were same parameters of 99 ms pulse width, 0.5 s pulse interval and 5 consecutive pulses except different voltage in groups. With a negative charge in the electric field was transfected into RPE cell layer, reverse electrode set to be transfected into PR cell layer. Retina mounts were made on seven days after transfection and the fluorescence of EGFP was photographed by fluorescent microscope. The expression of EGFP mRNA and protein were detected by reverse transcription polymerase chain reaction technique (RT-PCR) and Western blot.Results On seven days after transfection, in RPE subgroups, there were no specific fluorescence expressions in RPE cell layer and retina mounts of control eyes, while there were fluorescence expressions in experimental eyes. Western blot showed that the grayscale ratio of EGFP protein and beta;actin protein bands rose with the increased voltage. RT-PCR showed that each group produced positive amplification bands, and the relative ratio of gray level of EGFP mRNA and GADPH mRNA amplified bands gradually increased with the increased voltage.Conclusion Electroporation is an effective method for gene delivery into RPE cells in vivo.
Retinitis pigmentosa (RP) is a disease that seriously affects vision. It mainly affects rod cells and causes night blindness. At the end of the disease, due to the simultaneous involvement of cone cells, the patient’s central vision and peripheral vision loss are not effective. There is no effective treatment method. However, some studies have found that although the function of photoreceptors is lost in the pathological process of RP, the function of bipolar cells and ganglion cells and the neural connection with the visual center are preserved, which provides a condition of therapeutic application in optogenetics for optogenetics. Optogenetics controls the excitability of neurons by expressing the light-sensitive protein represented by rhodopsin ion channel protein-2 on neurons, and has shown great application prospects in reshaping the photoreceptor function of the retina. The treatment of a type of retinal degenerative disease provides an effective treatment option.