Normal brain aging and a serious of neurodegenerative diseases may lead to decline in memory, attention and executive ability and poorer quality of life. The mechanism of the decline is not clear now and is still a hot issue in the fields of neuroscience and medicine. A large number of researches showed that resting state functional brain networks based functional magnetic resonance imaging (fMRI) are sensitive and susceptive to the change of cognitive function. In this paper, the researches of brain functional connectivity based on resting fMRI in recent years were compared, and the results of subjects with different levels of cognitive decline including normal brain aging, mild cognitive impairment (MCI) and Alzheimer’s disease (AD) were reviewed. And the changes of brain functional networks under three different levels of cognitive decline are introduced in this paper, which will provide the basis for the detection of normal brain aging and clinical diseases.
Brain aging can affect the strength of functional connectivity between brain regions. In recent years, studies have shown that functional connectivity is fluctuant over time, and can reflect more physiological and pathological information. Therefore, in the study resting state functional magnetic resonance imaging (fMRI) data of 32 elderly subjects and 36 younger subjects were selected, and the sliding window technique was used to estimate dynamic functional connectivity network. Then, the dependency of fluctuating energy difference on frequency band was studied using wavelet packet analysis, conducting the linear regression with age at the same time. Results showed that the fluctuating energy in older group was significantly higher than that in the young group in low frequency, and it was significantly lower than that in the young people in high frequency. These results suggested that the dynamic functional connectivity between networks in the elderly exist slow wave phenomenon, which may be related to the decreased reaction rate of the elderly. This article provides new ideas and methods for the research about brain aging, and promotes a theoretical basis for further understanding of the physiological significance of brain dynamic functional connectivity.