Neuroimaging technologies have been applied to the diagnosis of schizophrenia. In order to improve the performance of the single-modal neuroimaging-based computer-aided diagnosis (CAD) for schizophrenia, an ensemble learning algorithm based on learning using privileged information (LUPI) was proposed in this work. Specifically, the extreme learning machine based auto-encoder (ELM-AE) was first adopted to learn new feature representation for the single-modal neuroimaging data. Random project algorithm was then performed on the learned high-dimensional features to generate several new feature subspaces. After that, multiple feature pairs were built among these subspaces to work as source domain and target domain, respectively, which were used to train multiple support vector machine plus (SVM+) classifier. Finally, a strong classifier is learned by combining these SVM+ classifiers for classification. The proposed algorithm was evaluated on a public schizophrenia neuroimaging dataset, including the data of structural magnetic resonance imaging (sMRI) and functional MRI (fMRI). The results showed that the proposed algorithm achieved the best diagnosis performance. In particular, the classification accuracy, sensitivity and specificity of the proposed algorithm were 72.12% ± 8.20%, 73.50% ± 15.44% and 70.93% ± 12.93%, respectively, on the sMRI data, and it also achieved the classification accuracy of 72.33% ± 8.95%, sensitivity of 68.50% ± 16.58% and specificity of 75.73% ± 16.10% on the fMRI data. The proposed algorithm overcomes the problem that the traditional LUPI methods need the additional privileged information modality as source domain. It can be directly applied to the single-modal data for classification, and also can improve the classification performance. Therefore, it suggests that the proposed algorithm will have wider applications.
Both feature representation and classifier performance are important factors that determine the performance of computer-aided diagnosis (CAD) systems. In order to improve the performance of ultrasound-based CAD for breast cancers, a novel multiple empirical kernel mapping (MEKM) exclusivity regularized machine (ERM) ensemble classifier algorithm based on self-paced learning (SPL) is proposed, which simultaneously promotes the performance of both feature representation and the classifier. The proposed algorithm first generates multiple groups of features by MEKM to enhance the ability of feature representation, which also work as the kernel transform in multiple support vector machines embedded in ERM. The SPL strategy is then adopted to adaptively select samples from easy to hard so as to gradually train the ERM classifier model with improved performance. This algorithm is verified on a B-mode ultrasound dataset and an elastography ultrasound dataset, respectively. The results show that the classification accuracy, sensitivity and specificity on B-mode ultrasound are (86.36±6.45)%, (88.15±7.12)%, and (84.52±9.38)%, respectively, and the classification accuracy, sensitivity and specificity on elastography ultrasound are (85.97±3.75)%, (85.93±6.09)%, and (86.03±5.88)%, respectively. It indicates that the proposed algorithm can effectively improve the performance of ultrasound-based CAD for breast cancers with the potential for application.