west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "SHEN Yiwei" 1 results
  • Establishment and test of intelligent classification method of thoracolumbar fractures based on machine vision

    Objective To develop a deep learning system for CT images to assist in the diagnosis of thoracolumbar fractures and analyze the feasibility of its clinical application. Methods Collected from West China Hospital of Sichuan University from January 2019 to March 2020, a total of 1256 CT images of thoracolumbar fractures were annotated with a unified standard through the Imaging LabelImg system. All CT images were classified according to the AO Spine thoracolumbar spine injury classification. The deep learning system in diagnosing ABC fracture types was optimized using 1039 CT images for training and validation, of which 1004 were used as the training set and 35 as the validation set; the rest 217 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. The deep learning system in subtyping A was optimized using 581 CT images for training and validation, of which 556 were used as the training set and 25 as the validation set; the rest 104 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. Results The accuracy and Kappa coefficient of the deep learning system in diagnosing ABC fracture types were 89.4% and 0.849 (P<0.001), respectively. The accuracy and Kappa coefficient of subtyping A were 87.5% and 0.817 (P<0.001), respectively. Conclusions The classification accuracy of the deep learning system for thoracolumbar fractures is high. This approach can be used to assist in the intelligent diagnosis of CT images of thoracolumbar fractures and improve the current manual and complex diagnostic process.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content