Objective To investigate the effectiveness of shortening-lengthening method using Ilizarov technique for repairing large tibial bone and soft tissue defects. Methods Between January 2006 and December 2011, 12 patients with large tibial bone and soft tissue defects were treated by shortening-lengthening method using Ilizarov technique. There were 8 males and 4 females with an average age of 39.3 years (range, 18-65 years). The causes were injury in 8 cases and chronic infection in 4 cases. The area of soft tissue defect was 5 cm × 4 cm to 20 cm × 16 cm, and the length of tibial bone defect was 4.5-8.0 cm with an average of 6.2 cm. Results Incision in the lengthening area healed by first intention; healing of wounds by first intention was achieved in 6 cases, delayed healing in 2 cases, and secondary healing in 4 cases, with no common peroneal nerve injury. All patients were followed up 18-54 months with an average of 29 months. In the lengthening area, the bone healing time was 180-365 days (mean, 267 days), and the healing index was 3.8-4.3 days/mm (mean, 4.1 days/mm). In the shortening area, the bone healing time was 195-380 days (mean, 297 days) in the others except 1 case who was repaired with bone grafting. Mild pin-related infection and loosening were observed in all cases, but no infection occurred in the lengthening or shortening area. At last follow-up, weight bearing of the leg was fully recovered in 12 cases. According to Mazur’s criteria, the function of ankle was excellent in 2 cases, good in 6 cases, and fair in 4 cases. Nine patients had equal limb length, and 3 patients had shortened length less than 2 cm. Conclusion Shortening-lengthening method using Ilizarov technique has the advantages of simple surgery, less complications, easy to close the wound, and good effectiveness in repairing of large tibial bone and soft tissue defects.
Objective To investigate the effect of preventing the loss of correction and vertebral defects after thoracolumbar burst fractures treated with recombinant human bone morphogenetic protein 2 (rhBMP-2) and allogeneic bone grafting in injured vertebra uniting short-segment pedicle instrumentation. Methods A prospective randomized controlled study was performed in 48 patients with thoracolumbar fracture who were assigned into 2 groups between June 2013 and June 2015. Control group (n=24) received treatment with short-segment pedicle screw instrumentation with allogeneic bone implanting in injured vertebra; intervention group (n=24) received treatment with short-segment pedicle screw instrumentation combining with rhBMP-2 and allogeneic bone grafting in injured vertebra. There was no significant difference in gender, age, injury cause, affected segment, vertebral compression degree, the thoracolumbar injury severity score (TLICS), Frankel grading for neurological symptoms, Cobb angle, compression rate of anterior verterbral height between 2 groups before operation (P>0.05). The Cobb angle, compression rate of anterior vertebral height, intervertebral height changes, and defects in injured vertebra at last follow-up were compared between 2 groups. Results All the patients were followed up 21-45 months (mean, 31.3 months). Bone healing was achieved in 2 groups, and there was no significant difference in healing time of fracture between intervention group [(7.6±0.8) months] and control group [(7.5±0.8) months] (t=0.336, P=0.740). The Frankel grading of all patients were reached grade E at last follow-up. The Cobb angle and compression rate of anterior verterbral height at 1 week after operation and last follow-up were significantly improved when compared with preoperative ones in 2 groups (P<0.05). There was no significant difference in Cobb angle and compression rate of anterior verterbral height between 2 groups at 1 week after operation (P>0.05), but the above indexes in intervention group were better than those in control group at last follow-up (P<0.05). At last follow-up, there was no significant difference of intervertebral height changes of internal fixation adjacent upper position, injured vertebra adjacent upper position, injured vertebra adjacent lower position, and internal fixation adjacent lower position between 2 groups (P>0.05). Defects in injured vertebra happened in 18 cases (75.0%) in control group and 5 cases (20.8%) in intervention group, showing significant difference (χ2=14.108, P=0.000); and in patients with defects in injured vertebra, bone defect degree was 7.50%±3.61% in control group, and was 2.70%±0.66% in intervention group, showing significant difference (t=6.026, P=0.000). Conclusion Treating thoracolumbar fractures with short-segment pedicle screw instrumentation with rhBMP-2 and allogeneic bone grafting in injured vertebra can prevent the loss of correction and vertebral defects.