west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "SUNYing" 3 results
  • Feature Extraction of Brainstem Auditory Evoked Potential Based on Wavelet Multi-resolution Analysis

    We proposed a multi-resolution-wavelet-transform based method to extract brainstem auditory evoked potential (BAEP) from the background noise and then to identify its characteristics correctly. Firstly we discussed the mother wavelet and wavelet transform algorithm and proved that bi-orthogonal wavelet bior5.5 and stationary discrete wavelet transform (SWT) were more suitable for BAEP signals. The correlation analysis of D6 scale wavelet coefficients between single trails and the ensemble average of all trails showed that the trails with good correlation (> 0.4) had higher signal-to-noise ratio, so that we could get a clear BAEP from a few trails by an average and wavelet filter method. Finally, we used this method to select desirable trails, extracted BAEP from every 10 trails and calculated theⅠ-Ⅴinter-waves' latency. The results showed that this strategy of trail selection was efficient. This method can not only achieve better de-noising effect, but also greatly reduce the stimulation time needed as well.

    Release date: Export PDF Favorites Scan
  • Study of the RNA Secondary Structure Prediction

    This paper proposes algorithm in predicting the RNA secondary structure that combines several sequence comparisons, searches the eigenvalue for subsequence division with dynamic programing, utilizing the minimum free energy method. Moreover, the paper assesses the results derived from this new algorithm based on base-pairs distance, climbing distance and morphology distance. The paper also compares the assessment result and the prediction results of different prediction tools, and analyzes the advantages of the new method and its improvement direction.

    Release date: Export PDF Favorites Scan
  • Primary Study on Predicting the Termination of Paroxysmal Atrial Fibrillation Based on a Novel RdR RR Intervals Scatter Plot

    Predicting the termination of paroxysmal atrial fibrillation (AF) may provide a signal to decide whether there is a need to intervene the AF timely. We proposed a novel RdR RR intervals scatter plot in our study. The abscissa of the RdR scatter plot was set to RR intervals and the ordinate was set as the difference between successive RR intervals. The RdR scatter plot includes information of RR intervals and difference between successive RR intervals, which captures more heart rate variability (HRV) information. By RdR scatter plot analysis of one minute RR intervals for 50 segments with non-terminating AF and immediately terminating AF, it was found that the points in RdR scatter plot of non-terminating AF were more decentralized than the ones of immediately terminating AF. By dividing the RdR scatter plot into uniform grids and counting the number of non-empty grids, non-terminating AF and immediately terminating AF segments were differentiated. By utilizing 49 RR intervals, for 20 segments of learning set, 17 segments were correctly detected, and for 30 segments of test set, 20 segments were detected. While utilizing 66 RR intervals, for 18 segments of learning set, 16 segments were correctly detected, and for 28 segments of test set, 20 segments were detected. The results demonstrated that during the last one minute before the termination of paroxysmal AF, the variance of the RR intervals and the difference of the neighboring two RR intervals became smaller. The termination of paroxysmal AF could be successfully predicted by utilizing the RdR scatter plot, while the predicting accuracy should be further improved.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content