Objective Bone marrow mesenchymal stem cells (BMSCs) play an important role in repairing nerve injury, meanwhile external temperature has significant effect on BMSCs transplantation, prol iferation, and differentiation. To investigate the effect of BMSCs transplantation and mild hypothermia on repair of rat spinal cord injury (SCI). Methods Forty-five female adult SD rats (weighing 200-250 g) were made the models of hemitransection SCI and divided randomly into 3 groups according to different treatments: group A (SCI group), group B (BMSCs transplantation group), and group C [BMSCs transplantation combined with mild hypothermia (33-35 ) group]. At 1, 2, 4, 6, and 8 weeks after injury, the fuction of hind l imb was evaluated with Basso Beattie and Bresnahan (BBB) score and incl ined plane test. At 4 weeks after injury, histopathology and BrdU immunohistochemistry staining were performed. At 8 weeks after injury, horseradishperoxidase (HRP) retrograde nerve trace and transmission electron microscope (TEM) testing were performed to observe the regeneration of axon. Results After 4 weeks, the function of hind l imb obviously recovered in groups B and C, there were significant differences in BBB score between groups B, C and group A (P lt; 0.05), between group B and group C (P lt; 0.05). There was no significant difference (P gt; 0.05) in tilt angle among 3 groups after 1 and 2 weeks, and there were significant differences (P lt; 0.05) among 3 groups after 4 weeks. HE staining showed that significant cavity could be seen in group A, l ittle in group B, and no cavity in group C. BrdU immunohistochemistry staining showed that the number of positive cells was 0, 90.54 ± 6.23, and 121.22 ± 7.54 in groups A, B, and C, respectively; showing significant differences (P lt; 0.01) among 3 groups. HRP retrograde neural tracing observation showed that the number of HRP positive nerve fibers was 10.35 ± 1.72, 43.25 ± 2.65, and 84.37 ± 4.59 in groups A, B, and C, respectively, showing significant differences (P lt; 0.01) among 3 groups. TEM observation showed that a great amount of unmyel inated nerve fibers and myel inated nerve fibers were found in central transverse plane in group C. Conclusion The BMSCs transplantation play an impontant role in promotion of recovering the function of hind l imb after SCI, and mild hypothermia has synergism effects.
To investigate the protective effect of propofol on ischemia/reperfusion induced spinal cord injury in rabbits and its influence on excitatory amino acid (EAA). Methods Sixty New Zealand white rabbits weighing 2.0-2.5 kg, half males and half females, were selected. The infrarenal circumaortic clamping model was used. And 6 mL/kg different fluids were continuously infused through a catheter into the aorta distal to the clamping site at a speed of 12 mL/(kg•h) during the 30 minutes ischemia period. According to the different infusing l iquids, the rabbits were randomized into 6 groups(n=10 per group): group A, normal sal ine; group B, 10% intral ipid; group C, propofol 30 mg/kg; group D, propofol 40 mg/kg; group E, propofol 50 mg/kg; group F, propofol 60 mg/kg. At 0, 6, 24, and 48 hours after reperfusion, neurologic outcomes were scored on a Tarlov scale system. At 48 hours after reperfusion, the number of normal neurons in the anterior spinal cord was counted, and concentration of EAA in the lumbar spinal cord was measured by high performance l iquid chromatography. Results The neuroethological score was better in groups C, D, E and F than that of groups A and B (P lt; 0.05), the score of group E was the highest (P lt; 0.05), and there was no significant difference between group A and group B (P gt; 0.05). The number of normal neurons in the anterior spinal cord of groups C, D, E and F was greater than that of groups A and B (P lt; 0.05), and group E was greater than groups C, D and F (P lt; 0.05). The concentration of EAA in groups A, B, C, D, E and F was greater than that of normal tissue, the group E was the lowest (P lt; 0.05), the groups A and B were the highest (P lt; 0.05), and there was no significant difference between group A and group B (P gt; 0.05). Concentrations of glutamate and aspartic acid were negatively correlated to normal neuron numbers in the anterior spinal cord and neuroethological scores 48 hours after reperfusion, and the corresponding correlation coefficient was — 0.613, — 0.536, — 0.874 and — 0.813, respectively (P lt; 0.01). Conclusion Propofol can significantly inhibit the accumulation of EAA in spinal cord and provide a protective effect against the ischemia/reperfusion injury induced spinal cord in rabbits.
Objective To explore the factors to affect severity of hyperextension injury of the cervical spinal cord (HEICSC). Methods Forty-five patients with HEICSC, 35 males and 10 females, aged 27-67 years old (mean 48.2 years old), were retrospectively analyzed. The disease course was 30 minutes to 16 days. According to modified Frankel grading, there were 6 cases of grade A, 8 cases of grade B, 16 cases of grade C and 15 cases of grade D. Spinal cord injuries (SCI) segments were determined according to SCI plane and high signal change (HSC) in spinal cord on MR images. The whole or large part of HSC segments were supposed to be main injured spinal cord segments (MISCSs) and the staccato or patchy HSC ones were supposed to be common injured spinal cord segments (CISCSs). When the external force acting on head or face suffered was larger, the force produced during high-speed movement or forehead and/or face had severe contused and/or) lacerated wound, the force was defined severe traumatic strength, whereas the reverse was true for sl ight traumatic strength. According to signal magnitude of the cervical discs on T2-weighted MR images, degeneration of cervical discs and cervical vertebras were classified into 5 grades: grade 0-4. Cervical spinal stenosis were graded to 5 grades according to the width of anterior or posterior cerebrospinal fluid layer to spinal cord on T2-weighted MR images and compressed degree of spinal cord on T1-weighted MR images. The influence of traumatic strength, cervical spinal degeneration or cervical spinal stenosis on SCI were explored. Results Among the 45 cases, 12 cases were caused by sl ight traumatic strength, 33 cases were caused by severe one. The cervical spinal cord was injuried more sl ightly and the patients were older in the sl ight traumatic strength cases than in the severe ones (P lt; 0.05). The number of MISCSs were 45 in 40 cases and the 25 segments were located at C3, 4 level. The number of CISCSs were 39 in 21 cases. All the cervical vertebraes of the 45 patients had degenerated. The most were in grade 3 in 22 patients and the severest degenerative segments were mostly located in C5,6 discs in 35 ones. The number of the MISCSs in different degenerative grades of discs was 0 in grade 0, 9 in grade 1, 20 in grade 2, 14 in grade 3, and 2 in grade 4. The ratios of the segment number of injuried spinal cord to the segment number of spinal stenosis in every grade of stenosis were 1/62 in grade 0, 2/11 in grade 1, 27/52 in grade 2, 33/33 in grade 3, 21/22 in grade 4. Conclusion Three main factors including the magnitude of traumatic strength, the degree of instabil ity of cervical vertebrae and the degree of cervical stenosis contribute to development and progress of HEICSC.
OBJECTIVE: To investigate a animal model of spinal cord injury in different degrees of impact. METHODS: A new weight-drop device was designed with the character of controlled degree of impact and time. After thirty-five rats underwent different degrees of impact, their motor function and pathological changes were observed. RESULTS: In control group, the rats could walk after reviving, and the micro-structure of spinal cord was normal. With 0.5 mm depth of impact, the rats also could walk, and the micro-structure of spinal cord did not change obviously. With 0.8 mm depth of impact, the rats could walk after several days of injury and only slight damage could be found in spinal cord. When the impact depth increased to 1.0 or 1.5 mm, the rats were paralyzed completely and could not walk after four weeks of injury. Severe injury was observed in spinal cord. CONCLUSION: This animal model of spinal cord injury is based on different degrees of impact. It has stable and repetitive characters for the research on spinal cord injury.
ObjectiveTo investigate the effects of the first neuron connection for the reconstruction of lower extremity function of complete spinal cord injury rats. MethodsForty adult female Sprague Dawley rats of 300-350 g in weight were selected to prepare the models of L1 transverse spinal cord injury. After 2 weeks of establishing model, the rats were randomly divided into control group (n=20) and experimental group (n=20). In the experimental group, the right hind limb function was reconstructed directly by the first neuron; in the control group, the other treatments were the same to the experimental group except that the distal tibial nerve and the proximal femoral nerve were not sutured. The recovery of motor function of lower extremity was observed by the Basso-Beattie-Bresnahan (BBB) scoring system on bilateral hind limbs at 7, 30, 50, and 70 days after operation. The changes of the spinal cord were observed by HE staining, neurofilament 200 immunohistochemistry staining, and the technique of horseradish peroxidase (HRP) tracing. ResultsAfter establishing models, 6 rats died. The right hind limb had no obvious recovery of the motor function, with the BBB score of 0 in 2 groups; the left hind limb motor function was recovered in different degrees, and there was no significant difference in BBB score between 2 groups (P>0.05). In the experimental group, HE staining showed that the spinal cord was reconstructed with the sciatic nerve, which was embedded in the spinal cord, and the sciatic nerve membrane was clearly identified, and there was no obvious atrophy in the connecting part of the spinal cord. In the experimental group, the expression of nerve fiber was stained with immunohistochemistry, and the axons of the spinal cord were positively by stained and the peripheral nerve was connected with the spinal cord. HRP labelled synapses were detected by HRP retrograde tracing in the experimental group, while there was no HRP labelled synapse in the control group. ConclusionDirect reconstruction of the first neurons is sufficient in the regeneration of corresponding neural circuit by the growth of residual axon; but the motor function recovery of the target muscles innervated by peripheral nerve is not observed.
ObjectiveTo explore the effect of perioperative nutritional management on patients with spinal cord injury under the enhanced recovery after surgery (ERAS) theory.MethodsA total of 82 patients with spinal cord injury admitted to a tertiay hospital in Shanghai between August 2018 and May 2020 were selected by convenience sampling method. They were randomly divided into intervention group and control group, with 41 cases in each group. The patients in the control group received conventional orthopaedics elective surgery nutritional management, while the patients in the intervention group adopted perioperative nutritional management based on ERAS concept, including establishing a multidisciplinary nutritional management team, conducting admission and regular nutritional screenings, and then developing targeted nutritional interventions based on the screening results. Biochemical indexes of nutritional assessment, electrolyte indexes, nutrition-related complications and general inpatient indexes were observed and compared between the two groups.ResultsThere were statistically significant differences in albumin, prealbumin, total protein, hemoglobin, potassium, sodium, and chlorine between the two groups on the first day after surgery and one day before discharge (P<0.05). The incidences of hypoglycemia (2.4% vs. 19.5%) and total complications (19.5% vs. 61.0%) in the intervention group were lower than those in the control group, and the differences were statistically significant (P<0.05). The total hospital stay [(10.48±2.61) vs. (12.09±2.74) d], postoperative hospital stay [(5.57±2.35) vs. (7.55±3.01) d], and hospital expenses [(11.21±4.42)×104 vs. (14.73±5.51)×104 yuan] in the intervention group were less than those in the control group (P<0.01).ConclusionPerioperative nutritional management under the ERAS theory can effectively improve the nutritional status of patients with spinal cord injury, maintain electrolyte balance, reduce the incidence of complications, shorten the length of hospitalization, reduce the cost of hospitalization, and promote postoperative rehabilitation of patients.
Objective To investigate the method of cultivation and the feature of differentiation of spinal cordderived stem cells in vitro.Methods The neural stemcells from spinal cord of 15 days fetal rats were harvested and cultivated in aserumfree limited medium. The stem cells were induced to differentiate and theresults were identified by cellular immunohistochemistry. Results Lots of stem cells were obtained from the spinal cord of fetal rats and the sphere of stemcells was formed about 10 days. Neural stem cells can give rise to mature neurons and astrocytes.Conclusion Epidermal growth factor/basic fibroblast growth factor serum-free limited medium can promote the proliferation activity ofthe stem cells. Spinal cord-derived stem cells can differentiate into glial cells and neurons.
OBJECTIVE To study the early protective effects of basic fibroblast growth factor(bFGF) on the experimental acute spinal cord injury. METHODS Thirty-four SD rats were randomly divided into three groups, and were subjected to contusion of thoracolumbar spinal cord. A thin plastic tube was placed in subarachnoid space below the injury level for perfusion. The bFGF-treated rats were received 20 microliters bFGF(containing bFGF 100 U) at once, 30 min, 1, 2, 3, 4, 6, 12, 24 and 48 hours after injury, and an equal volume of normal saline was given to the control group at the same time. The injured spinal cord was detected by morphological observation and biochemical index after injury. RESULTS The degree of ionic disorder in bFGF-treated rats was significantly ameliorated and the contents of H2O were also markedly decreased. The morphological finding showed that the damages of gray and white matter in bFGF-treated rats were slighter than those of saline-treated rats. CONCLUSION bFGF has some protective effects on the secondary lesion of early spinal cord injury in rats.
Objective To investigate the effects of chondroitinase ABC (ChABC) combined with bone marrow mesenchymal stem cells (BMSCs) in repair spinal cord injury of rats. Methods Primary BMSCs were isolated and cultured from the femur and tibia of neonatal Sprague Dawley (SD) rats. The spinal cord injury model was established in 24 adult SD male rats (weighing, 200-230 g), which were randomly divided into control group (group A), BMSCs transplantation group (group B), ChABC injection group (group C), and ChABC and BMSCs transplantation group (group D), 6 rats in each group. At 7 and 14 days after injury, Basso-Beattie-Bresnahan (BBB) score criteria was used to evaluate the hindlimb motor function; at 14 days after injury, the injured spinal cord tissue was perfused and stained by HE for further calculation of the injury area. Immunofluorescence staining were used for observing the expressions of glial fibrillary acidic protein (GFAP)/chondroitin sulfate proteoglycan (CSPG) and GFAP/growth associated protein 43 (GAP43). Results At 7 days after injury, three joints movement of the hindlimbs were recovered in all groups, and no significant difference in the BBB score was found among 4 groups (P gt; 0.05). At 14 days after injury, no load drag was observed in 3 joints of the hindlimbs in groups A, B, and C, but weight-bearing plantar or occasional dorsalis pedis weight-bearing walking was observed in group D with no plantar walking. The BBB score of group D was significantly higher than that of the other 3 groups (P lt; 0.05). HE staining showed that the cavity formed in the damage zone, and there were a large number of macrophages in the cavity and its surrounding, which was wrapped by scar tissue. The damage area of group D was significantly smaller than that of the other 3 groups (P lt; 0.05). At 14 days after injury, the GFAP/CSPG double immunofluorescence staining showed that the astroglial scar damage zone in group D was significantly reduced, and no cavity formation was found. And the fluorescence intensity in groups C and D was significantly lower than that in group B (P lt; 0.05). The GFAP/GAP43 double immunofluorescence staining showed that GAP43-positive fibers passed through the damage zone in group D and the fluorescence intensity in group D was significantly higher than those in groups B and C (P lt; 0.05). Conclusion Inhibition of astrocytes secreting CSPG by ChABC combined with BMSCs transplantation in early injury may promote the regeneration of nerve fibers, and repair spinal cord injury in rats.
After an injury of the peripheral nerve, therewould be naturally occurring the reduction oreven disappearance of FRAP from the substantiagelatinase in the corresponding part of the dorsalhorn of the spinal cord, The enzymhistochemical method was used to show the changesof FRAP activity before and after the nerveinjury. Aftcr the injury of the sciatic nerve,FRAP would be decreased in the correspondingpart of the spinal cord and gave a sharp contrastto that of the control rats and the uni...