Objective To validate the advantage of repairing bone defect by staphylococcus aureus injection carried in collagen membrane. Methods Twentyfour adult New Zealand rabbits were divided into two groups randomly. After the experimental model of standard bone defect had been made by operation, collagen membrane/staphylococcus aureus injection and staphylococcus aureus injection with the same quantity were transplanted in bone defect areas of the two groups respectively. The reconstructed tissues were observed by general method, X-ray, histology, and immunohistochemistry at 2nd、4th、6th、8th week respectively. Results The experimental group showed that new bone proliferated distinctly in bone defect areaand the proliferation lasted long, and no excessive connective tissue in defectarea. X-ray observation showed that there was continual callus growth in transplantation area in early stage and the distribution of new bones was even in the group. Histological observation showed that there were many new bone growth centers in bone defect area, trabecular bones were sequentially distributed, and mature bone replacement was complete. Immunohistochemical examination showed that bone morphogenetic protein (BMP) could be seen for a long time and BMP took up a large part in the new bone tissues. Conclusion Collagen membrane could prevent parenchyma from penetrating into bone defect area and provide room for new bone growth. As the carrier of staphylococcus, collagen membrane could reduce the overflow of staphylococcus and improve its curative effect as well.
Objective To investigate the effect of aureolysin (Aur) on staphylococcus aureus biofilm formation of dacron biomaterial surfaces under different Aur concentration. Methods Ninety dacron biomaterials were divided into 3 groups (group A, group IA, control group) with random number table (30 piece in each group). Dacron biomaterials were put into vials contained staphylococcus aureus (105 CFU/ml) respectively; then Aur was added to make the concentration at 400ng/ml in group A, and group B at 80ng/ml. The thickness and number of staphylococcus aureus biofilm on the surfaces of dacron biomaterials of each group were evaluated by confocal laser microscopy and scanning electron microscopy after incubating 6h, 16h, 24h, 30h, and 48h. Results The thickness and number of staphylococcus aureus biofilm on dacron biomaterials surfaces increased significantly with time dependence in control group. The thickness and number of staphylococcus aureus biofilm in group A were less than those in group B and control group at each time points (P〈0. 05). The thickness and number in group B were significantly decreased than those in control group (P 〈 0. 05). Conclusion The study shows that Aur can effectively inhibit the formation of staphylococcus aureus biofilm on dacron biomaterials surfaces with dose dependence.
OBJECTIVE: To investigate the ability of repairing bone defect with the compound of coralline hydroxyapatite porous (CHAP), fibrin sealant(FS) and staphylococcus aureus injection (SAI), and the feasibility to use the compounds as bone substitute material. METHODS: The animal model of bone defect was made on the bilateral radius of 54 New Zealand white rabbits, which were randomly divided into the experimental group(the defect was repaired with CHAP-FS-SAI), control group(with autograft) and blank control group(the defect was left unrepaired) with 18 rabbits in each group. The ability of bone defect repair was evaluated by gross observation, histopathological study, X-ray and biomechanical analysis 2, 4, 8 and 12 weeks after repair. RESULTS: (1) In the 2nd week, tight fibro-connection could be found between the implant and fracture site and there were many fibroblasts and capillary proliferation with many chondrocytes around CHAP in the experimental group, while only a few callus formed, and chondrocytes, osteoblast and osteoclast existed in the control group. (2) In experimental group and control group, a large quantity of callus was found 4 and 8 weeks; ossification of chondrocytes with weave bone formation were found 4 weeks and many osteocytes and weave bones and laminar bones were found 8 weeks. (3) In the 12th week, the complete ossification of implant with well bone remodeling, a large number of mature osteocytes and laminar were found in experimental group and control group, and CHAP still existed in the experimental group; the defect area filled with fibro-scar tissue and only many fibroblasts could be seen in blank control group. (4) X-ray findings were the following: In experimental and control groups, callus formation could be seen 2 weeks postoperatively, more callus formed 4 weeks, the bone defect area disappeared and CHAP scattered in the callus 8 weeks; the fracture line disappeared and medullary cavity became united (in control group); and in the 12th week, the cortex became continuous, the medullary cavity became united, and remodeling completed, while bone defect was not still united in blank control group. The maximal torque and torsional stiffness in the experimental group is higher than those in the control group 2 weeks (P lt; 0.05), but there was no significant difference (P gt; 0.05) between the two groups 4, 8, 12 weeks after repair. CONCLUSION: The compound of CHAP-FS-SAI has good biological compatibility, and it can be used for one kind of bone substitute material to repair the bone defect.
Methicillin-resistant Staphylococcus aureus is one of the important pathogens of healthcare-associated infections. In order to prevent and control the transmission of the drug-resistant organism in healthcare facilities, the Healthcare Infection Society and the Infection Prevention Society jointly conducted the guidelines for the prevention and control of methicillin-resistant Staphylococcus aureus in 2021. This article introduces the guide from the background, preparation process, main prevention and control measures and further studies, and compares the guidelines with the current prevention and control measures in China, so as to provide a methodological reference for preparation of the guide for domestic infection prevention and control practitioners, and provide evidence-based prevention and control strategies for clinical practice.
Objective To establish rabbit models of mixture-infectious endophthalmitis induced by exogenous Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Methods A total of 84 eyes of 42 New Zealand white albino rabbits were randomly divided into 4 groups. There were 21 eyes in each group. Rabbit eyes in group 1, 2, 3 and 4 received an intravitreal injection of 0.1 ml of mix bacterium (2times;104 CFU/ ml, including 103 S. aureus and 103 E. coli), S. aureus (104 CFU/ ml), E. coli (104 CFU/ml), and sterilized saline respectively. The eyes were examined by slit-lamp microscopy, ophthalmoscopy, A/B scan, electroretinography (ERG) and bacterial culture of vitreous humors at the timepoints of 6, 12, 24, 48 and 72 hours, and 4, 7, 10, 14 days after intravitreal injection. All eyeballs were then enucleated for histopathological examination. Results Various degrees of inflammatory reactions were presented in the 3 experimental groups after the injection, and the development trend of the disease was nearly the same. In group 1 active intraocular inflammation like anterior chamber exudates, started at 12 hours after injection (which was early than that in group 2 and 3), aggravated between 48 and 72 hours, alleviated slowly from 4 to 7 days, and was obviously better after 10 to 14 days while the corneal neovascularization and vitreous gray opacity begun to form. The bacterial culture was positive in group 1 (100%, 6 hours to 14 days after injection), group 2 (100%, 6 hours to 3 days after injection) and group 3 (100% from 6 hours to 7 days, and 67.67% at 14 days after injection). It was negative for group 2 (7 to 14 days after injection) and group 4 (6 hours to 14 days after injection). The amplitude of ERG b wave dissapeard in group 1 to 3, and decreased less than 30% in group 4 from the 48th hour after injection. Histopathological examination revealed that all intraocular structures infiltrated with inflammatory cells. Conclusion Complicated endophthalmitis rabbit models can be successfully established by intravitreal injection with S. aureus and E. coli.
ObjectiveTo analyze the pathogenic bacteria distribution, structure and characteristics of drug resistance in patients with acute stroke complicated with pulmonary infection, in order to provide reference for the prevention of hospital infection and rational use of antimicrobial agents. MethodsA total of 864 clinical specimens of acute stroke complicated with pulmonary infection were chosen for study between January 2012 and December 2014. Separation and cultivation were done in accordance with the operation procedures regulated by the Ministry of Health. Drug sensitivity examination was done by Kirby-Bauer (k-b). Super-extensive spectrum β lactamase (ESBL) and methicillin resistant staphylococcus aureus (MRSA) were detected to analyze the bacterial species and resistance transition. ResultsA total of 864 samples were cultivated, in which G-bacteria accounted for 61.2%. The main pathogenic bacteria was Klebsiella pneumoniae bacteria, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanmii and Staphylococcus aureus. Imipenem had high antimicrobial activity to G-bacilli, especially to Escherichia coli and Klebsiella pneumoniae bacteria. Linezolid, vancomycin and teicoplanin had high antibacterial activity to staphylococcus aureus. Vancomycin resistant Staphylococcus aureus was not found. Ciprofloxacin had high antibacterial activity to Pseudomonas aeruginosa, while imipenem had low antibacterial activity to Pseudomonas aeruginosa. Amikacin had high antibacterial activity to acinetobacter. ConclusionG-bacilli are predominant in acute stroke complicated with pulmonary infection. ESBLs and MRSA detection rate is high, and we should pay attention to the rational use of antibiotics to reduce drug resistance.
Objective Mesh infection may occur after incisional hernia repair using prosthetic mesh. Preparation of antibiotics-bonded meshes to prevent infection is one of the solutions. To evaluate the anti-infection effect of polypropylene mesh bonded norvancomycin slow-release microsphere by preparing the rat model of incisional hernia repair contaminatedwith Staphylococcus aureus. Methods The norvancomycin slow-release microspheres were prepared by emulsion and solvent evaporation method and they were bonded to polypropylene mesh (50 mg/mesh). The appearance of the microspheres was observed using scanning electronic microscope (SEM). The content of norvancomycin in microspheres and the release rate of the norvancomycin in norvancomycin-bonded polypropylene mesh were detected using high performance l iquid chromatography method. The rat models of incisional hernia were developed in 40 healthy Sprague Dawley rats, aged 10-11 weeks and weighing 200-250 g. The rats were divided randomly into the experimental group (norvancomycin-bonded polypropylene mesh repair, n=20) and the control group (polypropylene mesh repair, n=20). And then the mesh was contaminated with Staphylococcus aureus. The wound heal ing was observed after operation. At 3 weeks after operation, the mesh and the tissue around the mesh were harvested to perform histological observation and to classify the inflammatory reaction degree. Results The norvancomycin microsphere had integrated appearance and smooth surface with uniform particle diameter, 64% of particlediameter at 60 to 100 μm, and the loading-capacity of norvancomycin was 19.79%. The norvancomycin-bonded polypropylene patch had well-distributed surface and the loading-capacity of norvancomycin was (7.90 ± 0.85) mg/cm2. The release time of norvancomycin in vitro could last above 28 days and the accumulative release rate was 72.6%. The rats of 2 groups all survived to experiment completion. Wound infection occurred in 2 rats of the experimental group (10%) and 20 rats of the control group (100%), showing significant difference (χ2=32.727 3, P=0.000 0). The inflammatory reaction in experimental group was not obvious, grade I in 16 rats and grade II in 4 rats, and numerous inflammatory cell infiltration occurred in the control group, grade II in 3 rats and grade III in 17 rats, showing significant difference (Z=32.314, P=0.000). Conclusion The polypropylene mesh bonded norvancomycin slow-release microsphere has definite anti-infection effect in rat model of incisional hernia repair contaminated by Staphylococcus aureus.
Objective The intercellular adhesion (ica) gene of Staphylococcus epidermidis (SE) is a key factor to bacterial aggregation, to analysis the genotype of iatrogenic SE and to explore the effect of iatrogenic SE ica operon on theformation of bacterial biofilm on the surface of polyvinyl chloride (PVC). Methods Fifty-six cl inical isolates of iatrogenic SEwere selected, and PCR and gene sequencing were used to detect the genes related with bacterial biofilm formation. The genes contained 16S rRNA, autolysin (atlE), fibrinogen binding protein (fbe), and icaADB. The bacteria suspension of 1 × 105 cfu/mL iatrogenic SE was prepared; according to the test results of target genes, the PVC material and the genotype of icaADB+, atlE+, fbe+ strains were co-cultivated as the ica positive group; the PVC material and the genotype of icaADB-, atlE+, fbe+ strains were co-cultivated as the ica negative group. The thickness of biofilm and bacterial community quantity unit area on PVC materials were measured by confocal laser scanning microscope, and the surface structure of biofilm formation was observed by scanning electron microscope (SEM) at 6, 12, 18, 24, and 30 hours. Results The positive rate of 16S rRNA of iatrogenic SE strains was 100% (56/56). The genotype of icaADB+, atlE+, and fbe+ strains accounted for 57.1% (32/56). The genotype of icaADB-, atlE+, and fbe+ strains accounted for 37.5% (21/56). The sequencing results showed that the product sequences of 16S rRNA, atlE, fbe, and icaADB were consistent with those in GenBank. With time, no significant bacterial biofilm formed on the surface of PVC in ica operon negative group. But in ica operon positive group, the number of bacterial community was gradually increased, and the volume of bacterial biofilms was gradually increased on the surface of PVC. At 24 hours, mature bacterial biofilm structure formed, and at 30 hours, the volume of bacterial biofilms was tending towards stabil ity. The thickness of biofilm (F=6 714.395, P=0.000) and the bacterial community quantity unit area on PVC materials (F=435.985, P=0.000) in ica operon positive groupwere significantly higher than those in ica operon negative group. Conclusion Iatrogenic SE can be divided into 2 types ofica operon negative and ica operon positive bacteria. The iatrogenic SE ica operon can strengthen bacterium biofilm formation capabil ity on PVC materials, bacterium community quantity, and thickness of biofilm, it plays an important role in bacterium biofilm formation on PVC materials.
ObjectiveTo analyze the characteristics of distribution and drug resistance of clinical isolated staphylococci in the Whire Union Bacterial Resistance Surveillance Network across Sichuan from 2015 to 2018, so as to provide reference for clinical rational drug use and management of drug-resistant bacteria in Sichuan.MethodsA total of 18 023 strains of staphylococci were isolated from 9 hospitals of Whire Union Bacterial Resistance Surveillance Network for four years (2015-2018). Drug susceptibility test was carried out by disk diffusion method or automated instrument method. The data were statistically analyzed by WHONET 5.6 according to CLSI 2016 standard.ResultsThe 18 023 strains of staphylococci included 10 865 (60.28%) Staphylococcus aureus and 7 158 (39.72%) coagulase negative staphylococci. No strains resistant to vancomycin and linezolid were found. The detection rates of methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci were 25.10% (2 727/ 10 865) and 75.60% (5 411/7 158), respectively. The sensitivity of methicillin-resistant staphylococci to most antibiotics was significantly lower than that of methicillin-sensitive strains (P<0.05). The susceptibility rate of staphylococci to some antibiotics was significantly different from 2015 to 2018(P<0.05). The susceptibility rates of Staphylococcus aureus from different samples to rifampicin, moxifloxacin, ciprofloxacin, levofloxacin, oxacillin and erythromycin were significantly different (P<0.05). The susceptibility rates of Staphylococcus aureus from different departments in different samples of sulfamethoxazole, rifampicin, moxifloxacin, ciprofloxacin, levofloxacin, oxacillin, gentamicin, tetracycline, clindamycin and erythromycin were significantly different (P<0.05).ConclusionsThe susceptibility of strains isolated from different periods, different specimens and departments to the same antimicrobial agents varies greatly. For the infection of staphylococci, we should use drugs under the guidance of drug susceptibility according to the source of samples, which can avoid the abuse of beta-lactam drugs. Strengthening the monitoring and control of drug-resistant bacteria can prevent or reduce the spread of drug-resistant bacteria.
Objective To study the influence of brominated furanones on the biofilm (BF) formation of Staphylococcus epidermidis (SE) on polyvinyl chloride(PVC) materials, and provide new ideas for the research of surface modification of materials and clinical treatment of biomaterial centered infection. Methods We chose three kinds of brominated furanone with representative chemical structure for our research which were respectively 3,4dibromo-5-hydroxy2 (5H) -furanone (Mucobromic acid) in the first furanone group, 4-bromo-5(4-methoxyphenyl)3(methylamino)2(5H)furanone in the second furanone group, and 3,4dibromo-5,5-bis(4-methylphenyl)2(5H)-furanone in the third furanone group. The PVC material soaked with 75% ethanol for 5minutes was classified as the control group. The surface coating of the PVC materials in the four groups all underwent modification respectively and then they were cocultivated with staphylococcus epidermidis together. Confocal laser scanning microscope(CLSM) was adopted to detect the thickness of bacterium BF and bacterium community quantity unit area on PVC materials and scanning electron microscope(SEM) was used to observe surface structure of SE, BF formation at 6 h, 12 h, 18 h and 24 h respectively. Results The results of CLSM showed that, compared with the control group, SE bacterium community quantity unit area and the thickness of bacterium BF on the PVC material surface in the second furanone group were obviously smaller (Plt;0.05). SE bacterium community quantity unit area and thickness of bacterium BF on PVC material surface in the first and the third furanone groups had no significant difference (Pgt;0.05). The result of SEM showed that, the quantity of SE bacterium community unit area on PVC material surface in the second furanone group were smaller than that of the control group at 6 hours. The biofilm structure on PVC material surface in the control group was formed at 18 hours, but there were no mature biofilm structure on PVC material surface in the second furanone group at 18 hours. Conclusion The impact of different brominated furanone on SE biofilm formation on the surface of PVC materials is different. The second kind of furanone can inhibit the quantity of SE bacterium community unit area and SE biofilm formation on the surface of PVC materials.