ObjectiveTo predict the total hospitalization expenses of bronchopneumonia inpatients in a tertiay hospital of Sichuan Province through BP neural network and support vector machine models, and analyze the influencing factors.MethodsThe home page information of 749 cases of bronchopneumonia discharged from a tertiay hospital of Sichuan Province in 2017 was collected and compiled. The BP neural network model and the support vector machine model were simulated by SPSS 20.0 and Clementine softwares respectively to predict the total hospitalization expenses and analyze the influencing factors.ResultsThe accuracy rate of the BP neural network model in predicting the total hospitalization expenses was 81.2%, and the top three influencing factors and their importances were length of hospital stay (0.477), age (0.154), and discharge department (0.083). The accuracy rate of the support vector machine model in predicting the total hospitalization expenses was 93.4%, and the top three influencing factors and their importances were length of hospital stay (0.215), age (0.196), and marital status (0.172), but after stratified analysis by Mantel-Haenszel method, the correlation between marital status and total hospitalization expenses was not statistically significant (χ2=0.137, P=0.711).ConclusionsThe BP neural network model and the support vector machine model can be applied to predicting the total hospitalization expenses and analyzing the influencing factors of patients with bronchopneumonia. In this study, the prediction effect of the support vector machine is better than that of the BP neural network model. Length of hospital stay is an important influencing factor of total hospitalization expenses of bronchopneumonia patients, so shortening the length of hospital stay can significantly lighten the economic burden of these patients.
In order to improve the motion fluency and coordination of lower extremity exoskeleton robots and wearers, a pace recognition method of exoskeleton wearer is proposed base on inertial sensors. Firstly, the triaxial acceleration and triaxial angular velocity signals at the thigh and calf were collected by inertial sensors. Then the signal segment of 0.5 seconds before the current time was extracted by the time window method. And the Fourier transform coefficients in the frequency domain signal were used as eigenvalues. Then the support vector machine (SVM) and hidden Markov model (HMM) were combined as a classification model, which was trained and tested for pace recognition. Finally, the pace change rule and the human-machine interaction force were combined in this model and the current pace was predicted by the model. The experimental results showed that the pace intention of the lower extremity exoskeleton wearer could be effectively identified by the method proposed in this article. And the recognition rate of the seven pace patterns could reach 92.14%. It provides a new way for the smooth control of the exoskeleton.
Heart sound signal is a kind of physiological signal with nonlinear and nonstationary features. In order to improve the accuracy and efficiency of the phonocardiogram (PCG) classification, a new method was proposed by means of support vector machine (SVM) in which the complete ensemble empirical modal decomposition with adaptive noise (CEEMDAN) permutation entropy was as the eigenvector of heart sound signal. Firstly, the PCG was decomposed by CEEMDAN into a number of intrinsic mode functions (IMFs) from high to low frequency. Secondly, the IMFs were sifted according to the correlation coefficient, energy factor and signal-to-noise ratio. Then the instantaneous frequency was extracted by Hilbert transform, and its permutation entropy was constituted into eigenvector. Finally, the accuracy of the method was verified by using a hundred PCG samples selected from the 2016 PhysioNet/CinC Challenge. The results showed that the accuracy rate of the proposed method could reach up to 87%. In comparison with the traditional EMD and EEMD permutation entropy methods, the accuracy rate was increased by 18%–24%, which demonstrates the efficiency of the proposed method.
ST segment morphology is closely related to cardiovascular disease. It is used not only for characterizing different diseases, but also for predicting the severity of the disease. However, the short duration, low energy, variable morphology and interference from various noises make ST segment morphology classification a difficult task. In this paper, we address the problems of single feature extraction and low classification accuracy of ST segment morphology classification, and use the gradient of ST surface to improve the accuracy of ST segment morphology multi-classification. In this paper, we identify five ST segment morphologies: normal, upward-sloping elevation, arch-back elevation, horizontal depression, and arch-back depression. Firstly, we select an ST segment candidate segment according to the QRS wave group location and medical statistical law. Secondly, we extract ST segment area, mean value, difference with reference baseline, slope, and mean squared error features. In addition, the ST segment is converted into a surface, the gradient features of the ST surface are extracted, and the morphological features are formed into a feature vector. Finally, the support vector machine is used to classify the ST segment, and then the ST segment morphology is multi-classified. The MIT-Beth Israel Hospital Database (MITDB) and the European ST-T database (EDB) were used as data sources to validate the algorithm in this paper, and the results showed that the algorithm in this paper achieved an average recognition rate of 97.79% and 95.60%, respectively, in the process of ST segment recognition. Based on the results of this paper, it is expected that this method can be introduced in the clinical setting in the future to provide morphological guidance for the diagnosis of cardiovascular diseases in the clinic and improve the diagnostic efficiency.
Hypertension is the primary disease that endangers human health. A convenient and accurate blood pressure measurement method can help to prevent the hypertension. This paper proposed a continuous blood pressure measurement method based on facial video signal. Firstly, color distortion filtering and independent component analysis were used to extract the video pulse wave of the region of interest in the facial video signal, and the multi-dimensional feature extraction of the pulse wave was preformed based on the time-frequency domain and physiological principles; Secondly, an integrated feature selection method was designed to extract the universal optimal feature subset; After that, we compared the single person blood pressure measurement models established by Elman neural network based on particle swarm optimization, support vector machine (SVM) and deep belief network; Finally, we used SVM algorithm to build a general blood pressure prediction model, which was compared and evaluated with the real blood pressure value. The experimental results showed that the blood pressure measurement results based on facial video were in good agreement with the standard blood pressure values. Comparing the estimated blood pressure from the video with standard blood pressure value, the mean absolute error (MAE) of systolic blood pressure was 4.9 mm Hg with a standard deviation (STD) of 5.9 mm Hg, and the MAE of diastolic blood pressure was 4.6 mm Hg with a STD of 5.0 mm Hg, which met the AAMI standards. The non-contact blood pressure measurement method based on video stream proposed in this paper can be used for blood pressure measurement.
When performing eye movement pattern classification for different tasks, support vector machines are greatly affected by parameters. To address this problem, we propose an algorithm based on the improved whale algorithm to optimize support vector machines to enhance the performance of eye movement data classification. According to the characteristics of eye movement data, this study first extracts 57 features related to fixation and saccade, then uses the ReliefF algorithm for feature selection. To address the problems of low convergence accuracy and easy falling into local minima of the whale algorithm, we introduce inertia weights to balance local search and global search to accelerate the convergence speed of the algorithm and also use the differential variation strategy to increase individual diversity to jump out of local optimum. In this paper, experiments are conducted on eight test functions, and the results show that the improved whale algorithm has the best convergence accuracy and convergence speed. Finally, this paper applies the optimized support vector machine model of the improved whale algorithm to the task of classifying eye movement data in autism, and the experimental results on the public dataset show that the accuracy of the eye movement data classification of this paper is greatly improved compared with that of the traditional support vector machine method. Compared with the standard whale algorithm and other optimization algorithms, the optimized model proposed in this paper has higher recognition accuracy and provides a new idea and method for eye movement pattern recognition. In the future, eye movement data can be obtained by combining it with eye trackers to assist in medical diagnosis.
Keloids are benign skin tumors resulting from the excessive proliferation of connective tissue in wound skin. Precise prediction of keloid risk in trauma patients and timely early diagnosis are of paramount importance for in-depth keloid management and control of its progression. This study analyzed four keloid datasets in the high-throughput gene expression omnibus (GEO) database, identified diagnostic markers for keloids, and established a nomogram prediction model. Initially, 37 core protein-encoding genes were selected through weighted gene co-expression network analysis (WGCNA), differential expression analysis, and the centrality algorithm of the protein-protein interaction network. Subsequently, two machine learning algorithms including the least absolute shrinkage and selection operator (LASSO) and the support vector machine-recursive feature elimination (SVM-RFE) were used to further screen out four diagnostic markers with the highest predictive power for keloids, which included hepatocyte growth factor (HGF), syndecan-4 (SDC4), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), and Rho family guanosine triphophatase 3 (RND3). Potential biological pathways involved were explored through gene set enrichment analysis (GSEA) of single-gene. Finally, univariate and multivariate logistic regression analyses of diagnostic markers were performed, and a nomogram prediction model was constructed. Internal and external validations revealed that the calibration curve of this model closely approximates the ideal curve, the decision curve is superior to other strategies, and the area under the receiver operating characteristic curve is higher than the control model (with optimal cutoff value of 0.588). This indicates that the model possesses high calibration, clinical benefit rate, and predictive power, and is promising to provide effective early means for clinical diagnosis.
The in-vivo electron paramagnetic resonance (EPR) method can be used for on-site, rapid, and non-invasive detection of radiation dose to casualties after nuclear and radiation emergencies. For in-vivo EPR spectrum analysis, manual labeling of peaks and calculation of signal intensity are often used, which have problems such as large workload and interference by subjective factors. In this study, a method for automatic classification and identification of in-vivo EPR spectra was established using support vector machine (SVM) technology, which can in-batch and automatically identify and screen out invalid spectra due to vibration and dental surface water interference during in-vivo EPR measurements. In this study, a spectrum analysis method based on genetic algorithm optimization neural network (GA-BPNN) was established, which can automatically identify the radiation-induced signals in in-vivo EPR spectra and predict the radiation doses received by the injured. The experimental results showed that the SVM and GA-BPNN spectrum processing methods established in this study could effectively accomplish the automatic spectra classification and radiation dose prediction, and could meet the needs of dose assessment in nuclear emergency. This study explored the application of machine learning methods in EPR spectrum processing, improved the intelligence level of EPR spectrum processing, and would help to enhance the efficiency of mass EPR spectra processing.
Because of the diversity and complexity of clinical indicators, it is difficult to establish a comprehensive and reliable prediction model for induction of labor (IOL) outcomes with existing methods. This study aims to analyze the clinical indicators related to IOL and to develop and evaluate a prediction model based on a small-sample of data. The study population consisted of a total of 90 pregnant women who underwent IOL between February 2023 and January 2024 at the Shanghai First Maternity and Infant Healthcare Hospital, and a total of 52 clinical indicators were recorded. Maximal information coefficient (MIC) was used to select features for clinical indicators to reduce the risk of overfitting caused by high-dimensional features. Then, based on the features selected by MIC, the support vector machine (SVM) model based on small samples was compared and analyzed with the fully connected neural network (FCNN) model based on large samples in deep learning, and the receiver operating characteristic (ROC) curve was given. By calculating the MIC score, the final feature dimension was reduced from 55 to 15, and the area under curve (AUC) of the SVM model was improved from 0.872 before feature selection to 0.923. Model comparison results showed that SVM had better prediction performance than FCNN. This study demonstrates that SVM successfully predicted IOL outcomes, and the MIC feature selection effectively improves the model’s generalization ability, making the prediction results more stable. This study provides a reliable method for predicting the outcome of induced labor with potential clinical applications.