west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "TANG Tingting" 5 results
  • EXPERIMENTAL STUDY OF THE EFFECTS OF FLUID DYNAMICS ON THE CONSTRUCTION OF LARGESCALE TISSUE ENGINEERED BONE

    Objective To investigate the effects of flow shear stress and mass transport on the construction of largescale tissue engineered bone using a perfusion bioreactor. Methods Bone marrow (20 mL) was harvested from the il iac crestof the healthy volunteer, and then hBMSCs were isolated, cultured and identified. The hBMSCs at passage 3 were seeded on the critical-size β-TCP scaffold and cultured in a perfusion bioreactor for 28 days. Different flow shear stress (1 ×, 2 × and 3 ×) and different mass transport (3, 6 and 9 mL/min) were exerted on the cells seeded on the scaffold by changing the viscosity of media or perfusion flow rate. The cell prol iferation and ALP activity of cells seeded on the scaffold were detected, and histology observation and morphology measurement of cell/scaffold complex were conducted. Results When the perfusion flow rabe was 3 mL/min, the cell viabil ity of 2 × group was higher than that of other groups (P lt; 0.05). When the flow shear stress was 3 ×, no significant differences were found among 3, 6 and 9 mL/min in cell viabil ity (P gt; 0.05). When the perfusion flow rate was 3 mL/min, the activity of ALP of 2 × and 3 × groups was higher than that of 1 × group (P lt; 0.05). When the flow shear stress was 3 ×, the activity of ALP of 6 mL/min group was the highest (P lt; 0.05). After 28 days of perfusion culture, the ECM of all the groups distributed throughout the scaffold, and the formation and mineral ization of ECM was improved with the increase of flow shear stress when the perfusion flow rate was 3 mL/min. However, the increase of perfusion flow rate decreased the mineral ization of ECM when the flow shear stress was 3 ×. Conclusion As two important fluid dynamics parameters affecting the construction of large-scale tissue engineered bone, the flow shear stress and the mass transport should be measured duringthe process of constructing large-scale tissue engineered bone so as to maximize their roles.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • IMMUNOLOGICAL INVESTIGATION OF REPAIR OF ARTICULAR CARTILAGE DEFECTS WITH ALLOGENEIC CHONDROCYTES IN PORCINS

    Objective To evaluate the immunological reaction and the outcome of allogeneic chondrocyte transplantation in repairing articular cartilage defects in porcins. Methods Full articular cartilage from the knee of two Shanghai white porcins about one-month-old was removed and cut mechanically, digested by 0.25% trypsin and 0.2% type Ⅱ collagenase and cultured in 10% DMEM medium. Defects of 0.5 cm×0.5 cm involving the subchodral bone were created in both the left and right femur condyloid in 8 two-month-old Yunnai bama porcins. Allogeneic chondrocyte transplantation were implanted in defects at a density of (1.0-2.0)×106,0.2 ml. The lymphocytes from the receivers’ blood were collected before transplantation and after 3, 5, 7 and 12 weeks of transplantation, then mixed with allogeneic chondrocytes to determin the lymphocyte stimulation index(SI) in vitro. The histological observation in vivo was made after 5, 7 and 24 weeks of transplantation. Results Lymphocyte SI at 3, 5, 7 and 12 weeks(1.457±0.062,1.739±0.142,1.548±0.047,1.216±0.028) after transplantation was higher than that before transplantation(1.102±0.034,Plt;0.05). SI began to increase in the 3rd week and reached the peak value in the 5th week, then gradually declined at the 7th and 12th weeks, showing significant differences when compared with in the 5th week (Plt;0.05). Inflammation and lymphocytes infiltration could be seen in subchondral bone and the intergration area between repair tissue and normal cartilage in the 5th week, and then decreased and limited in subchondral bone in the 7th week. Defects were filled with cartilage tissue, which had good intergration with subchondral bone at 24 weeks after transplantation. Conclusion Immunological reactions can be found at early stage of allogeneic chondrocyte transplantation and then decreased with the time, the fullthickness articular cartilage defects could be repaired mainlywith hyaline cartilage by the allogeneic chondrocyte transplantation. This may provide a new method to repair articular cartilage defects clinically.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • COMPARATIVE RESEARCH ON REPAIRING ACUTE OSTEOCHONDRAL DEFECT BY MOSAICPLASTY AND THE COMBINATION OF MOSAICPLASTY WITH TISSUE ENGINEERING METHODS

    Objective To compare the effect of mosaicplasty, mosaicplasty with gene enhanced tissue engineering and mosaicplasty with the gels of non-gene transduced BMSCs in alginate on the treatment of acute osteochondral defects. Methods Western blot test was conducted to detect the expression of hTGF-β1, Col II and Aggrecan in 3 groups, namely hTGF-β1 transduction group, Adv-βgal transduction group and blank control group without transduction. Eighteen 6-month-old Shanghai mascul ine goats weighing 22-25 kg were randomized into groups A, B and C (n=6). BMSCs were isolatedfrom the autologous bone marrow of groups B and C, and were subcultured to get the cells at passage 3. In group B, the BMSCs were transduced with hTGF-β1. For the animals of 3 groups, acute cyl indrical defects 5 mm in diameter and 3 mm in depth were created in the weight bearing area of the medial femoral condyle of hind l imbs. In group A, the autologous osteochondral mosaicplasty was performed to repair the defect; in group B, besides the mosaicplasty, the dead space between the cyl indrical grafts and the host cartilage were injected with the suspension of hTGF-β1 gene transduced autogenous BMSCs in sodium alginate, and CaCl2 was dropped into it to form calcium alginate gels; in group C, the method was the same as the group B, but the BMSCs were not transduced. General condition of the goats after operation was observed, the goats were killed 12 and 24 weeks after operation to receive gross and histology observation, which was evaluated by the histological grading scale of O’Driscoll, Keeley and Salter. Immunohistochemistry and TEM observation were performed 24 weeks after operation. Results Western blot test showed the expression of the hTGF-β1, Col II and the Aggrecan in the hTGF-β1 transduction group were significantly higher than that of the Adv-βgal transduction and the blank control groups. All the goats survived until the end of experiment and all the wounds healed by first intention. Gross observation revealed the boundaries of the reparative tissue in group B were indistinct, with smooth and continuous surfaces of the whole repaired area; while there were gaps in the cartilage spaces of groups A and C. Histology observation showed the dead space between the cyl indrical grafts in group A had fibrocartilage-l ike repair tissue, fill ing of fibrous tissue or overgrowth of the adjacent cartilage; the chondrocytes in group B had regular arrangements, with favorable integrations; while the dead space between the cyl indrical grafts in group C had fibrocartilage-l ike repair tissue, with the existence of gaps. The histology scores of group B at different time points were significantly higher than that of groups A and C, and group C was better than group A (P lt; 0.05); for group B, significant difference was detected between 12 weeks and 24 weeks in the histology score (P lt; 0.05). Immunohistochemistry staining for Col II 24 weeks after operation showed the chondrocytes and lacuna of the reparative tissue in group B was obviously stained, while groups A and C presented l ight staining. TEM observation showed there were typical chondrocytes in the reparative tissue in group B, while parallel or interlaced arrangement collagen fiber existed in groups A and C. Conclusion Combining mosaicplasty with tissue engineering methods can solve theproblem caused by single use of mosaicplasty, including the poor concrescence of the remnant defect and poor integration with host cartilages.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • IN VITRO STUDY ON MULTIPLE DIFFERENTIATION POTENTIAL OF SWINE SYNOVIUM-DERIVED MSCs

    To study the method of isolating and culturing synovium-derived MSCs (SMSCs), and to investigate its multiple differentiation potential in vitro. Methods Three 2-month-old Changfeng hybrid swines weighing 8-10 kg (male and female) were used. SMSCs were harvested from the synovium of swine knee joints and cultured in vitro. When the SMSCs at passage 3 reached confluence, basic culture medium was removed, and the multi ple differentiationpotential of SMSCs was demonstrated in specific induction media (experimental group). The cells at passage 3 cultured with basic culture medium served as control group. After 21 days of chondrogenic differentiation, the cells underwent toluidine blue staining, immunohistochemistry staining and real-time fluorescence quantitative PCR detection. After 10 and 21 days of osteogenic differentiation, the cells underwent ALP staining and Al izarin red staining, respectively. After 21 days of adipogenic differentiation, the cells underwent Oil red O staining. Results SMSCs displayed long and thin or polygonal morphology 24 hours after culture. They prol iferated fast 48 hours after culture and presented large number of spindle-shaped cells with few globular cells 72 hours after culture. For the experimental group 21 days after chondrogenic induction, the cells were positive for toluidine blue staining with the formation of Aggrecan outside the cells; the immunohistochemistry staining revealed the expression of Col II; the real-time fluorescence quantitative PCR detection showed that the expressions of Col II A1, Aggrecan and SOX9 mRNA of the experimental group were greater than that of control group (P lt; 0.05). The cells were positive for ALP staining 10 days after osteogenic induction, and positive for Al izarin red staining 21 days after osteogenic induction, with the formation of calcium nodules. Oil red O staining displayed the formation of l i pid droplets inside the cells 21 days after adi pogenic induction. For the control group, the results of all the staining assays were negative except the ALP staining presenting with sl ight positive result. Conclusion SMSCs can be isolated from knee joint of swine and proliferate and differentiate into osteogenic, adi pogenic and chondrogenic cells in vitro. SMSCs may be a promising source of seed cells for tissue engineering.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • THE EFFECT OF HA MIXED WITH ADENOVIRUS MEDIATED rhBMP-2 TRANSFERRED BMSCs OF GOATS ONDISTRACTION OSTEOGENESIS/

    【Abstract】 Objective To evaluate the effectiveness of HA mixed with adenovirus mediated rhBMP-2 gene (AdvrhBMP-2) transferred BMSCs of goats on distraction osteogenesis. Methods Nineteen adult goats were used for the experiment,no matter they were male or female, and the weight of the goats were 15-20 kg. The 10 mL marrow was obtained from theil iac crest of each goat. The BMSCs was expanded and passaged conventionally. The 3th BMSCs was infected by Adv-rhBMP-2 at 200 multipl icity of infection (MOI). The 1×108 infected BMSCs were digested by 0.25% trypsin and collected, then mixed with HA. The right tibia lengthening models were developed, and mixture with BMSCs was injected in the osteotomy position. The goats were divided randomly into 4 groups according to the material injected in operation, group A: Adv-rhBMP-2/BMSCs/HA (n=6); group B: Adv-rhBMP-2/BMSCs (n=5); group C: Adv-β-gal/BMSCs/HA (n=4); group D: sham without any injections (n=4). After a seven-day latency period following ostectomy, distraction was carried out at a rate of 1 mm/day for 4 weeks. Roentgenography was practiced in 5, 8 and 12 weeks. After 12 weeks, the goats were sacrificed and dual-energy X-ray absorptiometry (DXA), biomechanical test and histology results were studied. Results After five and eight weeks surgery, X-raytest showed the distraction callus was more in group A and B than group C and D, and the radiographic score was significantly higher in group A and B than in the other two groups(P lt; 0.05); after 12 weeks surgery, the continued callus was formed in the distraction defects in all groups. DXA showed the mean bone mineral content of distraction callus in group A, B, C, D was (4.175 ± 1.921), (2.600 ± 0.638), (2.425 ± 0.826) and (1.175 ± 0.574) g, and the mean bone mineral density was (0.612 ± 0.196), (0.630 ± 0.159), (0.450 ± 0.166) and (0.266 ± 0.113) g/cm2. The group A and B was significantly higher than group C and D (P lt; 0.05).Biomechanical test showed the maximum loading of group A, B, C, D was (490.20 ± 155.08), (350.59 ± 80.48), (221.95 ± 68.79) and (150.65 ± 92.29) N, and elastic modulus was (178.24 ± 105.80), (105.88 ± 27.09), (81.18 ± 48.67) and (50.35 ± 47.64) MPa. The group A was significantly higher than in group C and D (P lt; 0.05). Histology observation revealed abundant bone formation in the distraction defects in group A, and the bone trabecula was arranged longitudinal and netl ike. Histomorphology analysis revealed the bone volume in group A, B, C, D was 72.35% ± 5.68%, 67.58% ± 7.42%, 49.63% ± 4.87% and 38.87% ± 2.35%, and the bone formation was significantly greater in group A compared with group D (P lt; 0.05). Conclusion HA mixed with rhBMP-2 modified BMSCs can accelerate distraction osteogenesis in goats.

    Release date:2016-09-01 09:09 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content