west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "TIAN Hai" 4 results
  • The Effect of Smooth Muscle Cell Transplantation on MyocardialMMP2, MMP9 and TIMP3 Content One Week after Myocardial Infarction

    Objective To evaluate the effect of smooth muscle cell transplantation on myocardial interstitial reconstruction shortly after myocardial infarction. Methods A total of 48 female Wister rats were randomly divided into two groups with the random number table, the control group (n=24) and the smooth muscle cell transplantation group (n=24). The left coronary artery was ligated to set up the myocardial infarction animal model. An amount of 05 ml phosphate buffered saline(PBS) containing 1×106 smooth muscle cells or 0.5 ml PBS without cells was injected into the injured myocardium immediately. By immunoblot and reverse transcriptionolymerase china reaction (RT-PCR), we observed the amount of protein and mRNA of matrix metalloproteinase2(MMP-2), matrix metalloproteinase-9(MMP-9) and tissue inhibitor of metalloprotease-3 (TIMP-3) in the myocardium of the rats. Results The transplanted smooth muscle cells survived well. Compared with the control group, myocardial TIMP3 mRNA (1.06±0.22 vs. 0.81±0.19, t=-2.358, P=0.033) and protein content (3.33±0.53 vs. 1.63±0.47, t=-6.802, Plt;0.001) were significantly increased in the transplantation group. Myocardial MMP-2, MMP-9 mRNA (0.49±0.12 vs. 1.16±0.18, t=8.453, Plt;0.001; 0.45±0.12 vs. 0.80±0.11, t=5.884, Plt;0.001) and protein content (3.98±1.08 vs. 6.05±0.91, t=4.139, P=0.001; 0.39±0.14 vs. 0.57±0.17, t=2.409, P=0.031) [CM(1585mm]were significantly reduced in the transplantation group compared with the control group. Conclusion transplanted smooth muscle cells can survive well in the infarction myocardium and can increase the amount of myocardial TIMP-3 mRNA and protein content and reduce myocardial MMP-2, MMP-9 mRNA and protein content, which is an effective way to prevent harmful cardiac remodeling.

    Release date:2016-08-30 06:02 Export PDF Favorites Scan
  • Research progress of effect of gut microbiota and its metabolites on coronary artery diseases

    Gut microbiota and its metabolites in various human diseases have gradually become a research hotspot in the current medical community. And coronary artery disease is currently one of the most threatening clinical cardiovascular diseases in the world, so the use of gut microbiota and its metabolites in the development of its pathophysiology has also received more and more attention. Therefore, this paper reviews the effects of gut microbiota and its metabolites on coronary artery disease, as well as the research progress of intervening gut microbiota and its metabolites as therapeutic targets, hoping to expand the future research direction in this field and provide new ideas with treating coronary artery disease.

    Release date: Export PDF Favorites Scan
  • The status and prospect of ultrasound and microbubble-mediated gene delivery in cardiovascular disease gene therapy

    With the development of molecular and cellar cardiology, gene therapy to cardiovascular disease has become the hot spot and the direction of study. Now, preclinical studies on ultrasound-mediated gene delivery (UMGD) in cardiovascular disease have achieved some success, but it is still hindered by a series of practical challenges for clinical translation. Even so, UMGD still holds the promise to cardiovascular disease in gene therapy for its non-invasiveness, accuracy, safety and ability to deliver multiple genes with repeated deliveries. In this review, we will focus on the basic principle, the current development, the future prospect and drawbacks of UMGD in the therapeutic applications of cardiovascular disease.

    Release date:2018-03-05 03:32 Export PDF Favorites Scan
  • Enhancement of gene transfection efficiency and therapeutic effect of ultrasound-targeted microbubble destruction in vivo with cationic microbubble

    ObjectiveTo construct a cationic microbubble (CMB), and investigate the enhancement of gene transfection efficiency and therapeutic effect of ultrasound-targeted microbubble destruction (UTMD) in vivo with CMB compared to definity MB (DMB).Methods In vitro, the CMB was prepared by the method of thin film hydration. The morphology, size, zeta potential, and gene-carrying capacity of CMB were compared with the DMB. In vivo, the firefly luciferase gene which was used as a reporter gene was targeted transfected into myocardium of 16 rats with CMB and DMB, respectively. The gene transfection efficiency and targeting were observed dynamically. Then, ischemia-reperfusion (I/R) model was performed on 64 rats. The models of 60 rats were successfully confirmed by using ultrasonography at 5 days after I/R. The rats were divided into 3 groups (n=20) randomly. The control group received DMB carrying empty plasmid for transfection; DMB group received DMB carrying AKT plasmid for transfection; and CMB group received CMB carrying AKT plasmid for transfection. The cardiac perfusion, cardiac function, infarct size, and infarct thickness were measured by ultrasonography and histological observations after treatment. In addition, the capillary and arteriolar densities were measured with immunohistochemical staining. The myocyte apoptosis was measured with TUNEL staining. The protein expressions of AKT, phospho-AKT (P-AKT), Survivin, and phospho-BAD (P-BAD) were measured by Western blot.ResultsThe size of CMB was uniformly. The zeta potential of CMB was significantly higher than that of DMB (t=28.680, P=0.000). The CMB bound more plasmid DNA than the DMB (P<0.05). The luciferase activity of myocardium were higher in CMB group than in DMB group bothin vitro and in vivo measurements (P<0.05). There was no significant difference between groups in the ratio of signal intensity in anterior wall to posterior wall, ejection fraction (EF), and fractional shortening (FS) at 5 days after I/R (P>0.05), but the above indexes were significant higher in CMB and DMB groups than in control group at 21 days after I/R (P<0.05). Besides, the above indexes were significant higher in CMB group than in DMB group at 21 days after I/R (P<0.05). The infarct size was the smallest and infarct thickness was the thickest in the CMB group, followed by DMB group, control group at 21 days after I/R. The capillary and arteriolar densities of CMB and DMB groups were significant higher than those of control group at 21 days after I/R (P<0.05). Besides, the capillary and arteriolar densities of CMB group were significant higher than those of DMB group (P<0.05). The apoptotic cells were the most in the control group, followed by DMB group, CMB group at 3 days after gene transfection, showing significant differences between groups (P<0.05). The protein expressions of AKT, P-AKT, Survivin, and P-BAD were significant higher in CMB and DMB groups than those in control group at 3 days after gene transfection (P<0.05). Besides, these protein expressions were significant higher in CMB group than those in DMB group (P<0.05).ConclusionThe DNA-carrying capacity and gene transfection efficiency are elevated by CMB, although its physicochemical property is the same as DMB. When ultrasound-targeted AKT gene transfection is used to treat myocardial I/R injury in rats, delivery of AKT with the CMB can result in higher transfection efficiency and greater cardiac functional improvements compared to the DMB.

    Release date:2018-02-07 03:21 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content