Objective To study and compare boneforming mechanismafter compound of autologous periosteum-wrapped tendon with spongiosa homogenate and other implants in articular cavity, and to explore the possibility of the compound as a substitute for the lunate in Kienbock’s disease.Methods Forty-five New Zealand white rabbits were randomly divided into three groups: periosteum group(group A, n=15), composite group(group B, n=15), and control group(group C, n=15). The three sorts of implants were placed into articular cavity of the knee respectively. The changes of bone formation and bone morphogenetic protein (BMP) distribution of the implants were examined under optical microscope with HE and immunohistochemical staining and measured by CT 3, 6 and 9 weeks after operation.Results The result of BMP staining was negative after 3 weeks and positive in new cartilage cells after 9 weeks in group A. The positive BMP staining was observed in group B after 3 weeks and 9 weeks, which mainly distributed in new bone cells and cartilage cells. And negative BMP staining was observed every stage in groupC. The quantitative CT bone mineral density (BMD) values of 3 implants were analyzed, the difference was significant between the groups (Plt;0.01), except that between groups A and C in the 3rd week (Pgt;0.05). Conclusion The above results demonstrated that the compound of autologous periosteum-wrapped tendon and spongiosa homogenate can produce bone and cartilage massively under the induction of periosteum and bone-forming factors such as BMP in spongiosa homogenate and the compound can be used as a substitute for the lunate.
Objective To explore the impact of COVID-19 infection on the early clinical efficacy of valve replacement patients. MethodsThe perioperative data of patients who underwent single valve replacement in our center from January to February 2023 were collected continuously. According to the COVID-19 infection situation, the patients were divided into a COVID-19 infected group and a non-infected group. The relevant data of the two groups were compared, including general situation, comorbidities, operation time, aortic occlusion time, postoperative ventilator use time, intensive care unit (ICU) stay time, myocardial enzyme profile and respiratory related complications were statistically analyzed. The primary end point of the study was the incidence of postoperative respiratory and circulatory system complications, and the secondary end point was postoperative myocardial enzyme profiles in both groups. ResultsA total of 136 patients were included, including 53 males and 83 females, with an average age of 53.4±10.2 years. Thirty-two patients underwent aortic valve replacement, 102 mitral valve replacement, and 2 tricuspid valve replacement.There was no significant difference in the incidence of postoperative disease between the two groups (9.09% vs. 11.43%, P=0.654), and the duration of postoperative mechanical ventilation in the novel coronavirus infection group [913.50 (465.50, 1 251.00) min vs. 1 201.00 (1 003.75,1 347.75) min, P=0.001], ICU stay time [2 (2, 3) d vs. 3 (2, 3) d, P<0.001) was a new champions league group, the myocardial enzyme spectrum [TnI-I: 2.66(1.19, 5.65) ng/mL vs. 4.76 (2.55, 7.93) ng/mL, P=0.001; BNP: 192.00 (100.93, 314.75) pg/mL vs. 608.5 (249.75, 1150) pg/mL, P<0.001], and the difference was statistically significant. Conclusion For single valvular disease patients undergoing elective surgery, the short-term efficacy of surgical treatment after recovery from COVID-19 infection was relatively good, and the incidence of in-hospital mortality and postoperative complications was not significantly increased.
ObjectiveTo investigate the effect of Masquelet technique combined with artificial dermis on repairing bone and soft tissue defects in rabbits, and to observe the microstructure and vascularization of induced membrane, so as to guide the clinical treatment of Gustilo-Anderson type Ⅲ open fracture with large bone defect and soft tissue defect.MethodsEighty male rabbits, weighing 2.03-2.27 kg (mean, 2.11 kg), were selected. The bilateral thighs of 64 rabbits were randomly divided into experimental group and control group, the remaining 16 rabbits were sham operation group. Bone and soft tissue defect models of femur were made in all rabbits. In the experimental group, the first stage of Masquelet technique was used [polymethyl methacrylate bone cement was filled in bone defect area] combined with artificial dermis treatment; in the control group, the first stage of Masquelet technique was used only; in the sham operation group, the wound was sutured directly without any treatment. Four rabbits in sham operation group and 16 rabbits in the experimental group and control group were sacrificed at 2, 4, 6, and 8 weeks after operation, respectively. The induced membranes and conjunctive membranes were observed on both sides of the femur. The membrane structure was observed by HE staining, and the microvessel density (MVD) was counted by CD34 immunohistochemical staining.ResultsGross observation showed that the spongy layer of collagen in the artificial dermis of the experimental group disappeared completely at 4 weeks after operation, and the induced membrane structure of the experimental group and the control group was complete; the membrane structure of the control group was translucent, and the membrane structure of the experimental group was thicker, light red opaque, accompanied by small vessel proliferation. The membrane structure of the experimental group and the control group increased gradually from 6 to 8 weeks after operation. In the sham operation group, only scar tissue proliferation was observed over time. HE staining showed that a large number of muscle fibers and a small amount of collagen fibers proliferation with inflammatory cell infiltration could be seen in the experimental group and the control group at 2 weeks after operation; most of the sham operation group were muscle fibers with a small amount of interfibrous vessels. At 4 weeks after operation, collagen fibers increased and some blood vessels formed in the experimental group. The nuclei of collagen fibers in the control group were round-like, while those in the experimental group were flat-round. At 6 and 8 weeks after operation, the collagen fibers in the experimental group and the control group increased. The nuclei of the collagen fibers in the control group were still round-like. The nuclei of the collagen fibers in the experimental group were fusiformis and deeply stained compared with those in the control group. The proliferation of blood vessels was observed in both groups, and the number of proliferation vessels in the experimental group was increased compared with that in the control group. In the sham operation group, a large number of fibroblasts still appeared, but no significant proliferation of blood vessels with time was observed. CD34 immunohistochemical staining showed that MVD in each group increased gradually with the prolongation of time after operation. MVD in the sham operation group was significantly higher than that in the experimental group and the control group at 2 weeks after operation, and significantly smaller than that in the experimental group and the control group at 4, 6, and 8 weeks after operation (P<0.05). MVD in the experimental group was significantly higher than that in the control group at 4 and 6 weeks after operation (P<0.05), but there was no significant difference in MVD between the two groups at 2 and 8 weeks (P>0.05).ConclusionMasquelet technique combined with artificial dermis in the treatment of femoral bone defect and soft tissue defect in rabbits can significantly promote the vascularization of membrane structure at 4-6 weeks after operation. The combination of these two methods has guiding significance for the treatment of Gustilo-Anderson type Ⅲ open fracture with bone and soft tissue defects.