ObjectiveTo observe the clinical effect of super-selective ophthalmic artery or selective carotid artery thrombolytic therapy for central retinal artery occlusion (CRAO). MethodsTwelve CRAO patients (12 eyes) were enrolled in this study. The patients included 7 males and 5 females. The age was ranged from 19 to 68 years old, with an average of (50.0±3.5) years. The disease duration was from 8 to 72 hours, with a mean of 18 hours. All the patients were received the treatment of super-selective ophthalmic artery or selective carotid artery thrombolysis with urokinase (total 0.20-0.4 million U) and injection of papaverine 30 mg. Five patients received the treatment of super-selective ophthalmic artery thrombolytic therapy, 7 patients received the treatment of selective carotid artery thrombolytic therapy (4 patients because of the financial issues, 3 patients because of thin ophthalmic artery). According to the visual acuity of post-treatment and pre-treatment, the therapeutic effects on vision were defined as effective markedly (improving three lines or more), effective (improving two lines) and no effect (no change or a decline). According to the arm-retinal circulation time (A-Rct) and filling time of retinal artery and its branches (FT) on fluorescence fundus angiography (FFA), the therapeutic effects on retinal circulation were defined as effective markedly (A-Rct 15 s, FT 2 s), effective (A-Rct was improved but in the range of 16-20 s, FT was in 3-8 s) and no effect (A-Rct was improved but 21 s, FT 9 s). ResultsThe vision changes showed effective markedly in 5 eyes (41.7%), effective in 5 eyes (41.7%), no effect in 2 eyes (16.6%). The total therapeutic efficiency on vision was 83.4%. The retinal circulation was improved in all eyes after treatment, including effective markedly in 8 eyes (67.0%), effective in 4 eyes (33.0%). The total therapeutic efficiency on retinal circulation was 100.0%. No complications occurred in these 12 patients during the treatment or follow-up, such as puncture site hematoma, intracranial hemorrhage, cerebral embolism, eye movement abnormalities, retinal and vitreous hemorrhage. ConclusionSuper-selective ophthalmic artery and selective carotid artery thrombolytic therapy were effective in the treatment of CRAO.
Objective To explore the effect of xue-shuan-tong(panax notoginsang saponins,PNS)or isovalaemic haemodilution(IHD)and PNS combining IHD treatment on activities of fibrinolysis and hemorrheology in patients with retinal vein occlusion (RVO). Methods Seventy-three patients with RVO were allocated at random to 3 groups which were treated with PNS,IHD and PNS combining IHD.The activities of t-PA and PAI,rheological parameters and visual acuity before and after treatment were observed. Results At the end of treatment,significantly increased activity of t-PA and decrease of PAI was found in combined treatment group and PNS group,but the difference before and after treatment was not significant in IHD group.Furthermore,except the plasma viscosity in IHD group,the other hemorrheological parameters in all the petients of 3 groups revealed to be improving.One month after treatment,the parameters return completely to normal in both PNS and IHD groups; while the whole blood apparent relative viscosity in low shear rate,RBC aggregation and RBC deformability maintained still in lower level,and also the visual acuity resumed better and quicker in combined group. Conclusion Combined treatment of PNS and IHD can both regulate the activity of fibrinolysis and decrease the blood viscosity of patients with RVO for a period of relatively long time and increase the effect of treatment. (Chin J Ocul Fundus Dis,1998,14:7-9)
Objectives To study the relationship between matrix metalloproteinase-9 (MMP-9) and hemorrhagic transformation (HT) in ischemic stroke patients and provide evidence for the further clinical studies, thrombolytic therapy selection, and application of MMP inhibitors to clinical practice to extend the windows for thrombolytic therapy. Methods The studies on relationship between MMP-9 and hemorrhagic transformation in ischemic stroke were identified, in which HT was followed-up based on plasma level of MMP-9 or comparison of plasma level of MMP-9 was conducted based on HT or not, regardless of language of publication and type of design. MEDLINE (1966-Jan. 2006), EMBASE (1966-Apr. 2006), CNKI (1977-Feb.2006), and Wanfang database (1989-2005) were searched and the references lists of eligible studies were manually searched. Two reviewers independently evaluated the quality of studies and extracted data. The data were analyzed using the RevMan 4.2. and SPSS11.0 softwares. Results Six trials fulfilled the inclusion criteria, including 558 patients, 130 of them developed hemorrhagic transformation. The heterogeneity between studies was statistically significant; (Plt;0.0001). We didn’t pool the data of studies of plasma MMP-9 level. Most of the studies showed that the plasma MMP-9 level in HT or in a certain type of HT was higher than that in non-HT patients. The result of subgroup analysis showed that the plasma MMP-9 level was independently associated with HT, summary OR=14.45, 95%CI (4.90, 43.65). Conclusions The values of plasma MMP-9 in HT or in a certain type of HT are higher than that in non-HT. MMP-9 may independently be a risk of hemorrhagic transformation. The sample size of the included studies is small. So the conclusions need to be confirmed with further studies.
Objective To evaluate the clinical effect of Nd:YAG laser embolysis combined urokinase thrombolysis therapy for branch retinal artery occlusion. Methods Thirty-four eyes of 34 patients with branch or hemiretinal artery occlusion (RAO) were studied. All patients were confirmed according to the diagnosis criteria of RAO at acute stage, disease course ranged from 12 hours to nine days. Local retinal edema and the yellowish white embolus within the retinal arteriole could be observed by color photograph and fundus fluorescein angiography (FFA) examination. Nd:YAG laser therapy was given to all eyes, which focused on the embolus by an ocular contact lens. The laser pulse was delivered directly and gradually by 0.3-0.9 mJ according to embolus condition. Fundus photographs and FFA were taken before and immediately after the laser treatment. On the next day after laser treatment, all patients received urokinase thrombolysis therapy through intravenous drip of 100 000200 000IU per time by two times for five consecutive days. Follow-up time ranged from two to three days after drug treatment and all patients accepted FFA, visual acuity and visual field examination. According to early angiography images of fluorescence filling, the recovery will be graded into full recovery, great recovery, partial recovery and invalid. Results After laser treatment, most eyes showed immediate recovery of blood flow in the occluded arteriole in fundus examination. Complete, great, and partial recovery were found in 13 eye (38.2%), 11 eyes (32.4%), and five eyes (14.7%) respectively by FFA examination; five eyes (14.7%) did not response to the treatment. After urokinase thrombolysis therapy, complete, great, and partial recovery were found in 16 eye (47.1%), 15 eyes (44.1%), and three eyes (8.8%). The difference of visual acuity was statistically significant before and after the combined treatment (chi;2=30.7,P<0.05). In most cases, visual field defect showed lighter than before. No systemic complications were observed during the combined treatment. Conclusion Nd:YAG laser embolysis combined urokinase thrombolysis therapy for branch retinal artery occlusion is effective and relatively safe.
ObjectiveTo evaluate the therapeutic effects of super-selective arterial catheterization with thrombolysis for central retinal artery occlusion (CRAO).MethodsThe clinical data of 16 patients with CRAO were collected. Aortic arch angiography with the catheterization through femoral artery firstly, and then the selective internal carotid artery angiography had been performed on all of the patients, including 12 ones who had undergone the urokinase thrombolysis therapy.ResultsIn the 16 patients, 3 with the severe straitness of the internal carotid artery and 1 with occlusion of incision of the ocular artery had not been treated by thrombolysis; and the others with occlusion of arterial trunk and CRAO had undergone thrombolysis therapy successfully. After the treatment, the visual acuity of the patients had improved in different degree and no systemic side effect had been found during the treatment.ConclusionsSuper-selective arterial catheterization with thrombolysis for CRAO may improve the visual acuity of the patients. The effects and risks of this treatment should be evaluated in further study.(Chin J Ocul Fundus Dis, 2005,21:20-21)
Objective To investigate the efficacy and the safety of external therapy of ultrasound (ETUS) enhancing thrombolysis on the experimental retinal vein occlusion. Methods The effect of ETUS enhanced thrombolysis and the impact of ultrasound energy and exposure were investigated respectively after both eyes of 51 rabbits with retinal branch vein occlusion created by photodynamic initiated thrombosis were divided into 4 groups. The first 2 groups are the ETUS groups, including one group (15 rabbits) underwent intravenous injection with urokinase (UK) (1700-2200 UK dissolved into 20 ml normal saline), and other group (12 rabbits) underwent intravenous injection with normal saline. In these 2 groups, each rabbit received ETUS treatment (1.0 W/cm2, 20 min) in one eye and the fellow eye did not which was as the control. The latter 2 groups are the energy and duration of ultrasound groups, and 12 rabbits in each group underwent ETUS with the energy of 0.7 and 1.0 W/cm2 respectively. Each of the 2 groups was divided into 3 subgroups (8 rabbits in each) according to the radiated durations (8, 14, and 20 minutes). All of the eyes except the control ones underwent ETUS with 1 MHz ultrasound and 100 Hz pulsed ultrasound once a day for 3 days. Fundus fluorescein angiography (FFA) was used to detect the vascular condition 4 days after ETUS, and at the 15th day, retinal light microscopy and electron microscopy were performed. Results The vascular recanalization rate in ETUS+UK treatment group was 66.7%, which is obviously higher than which in single UK group (20.0%, P=0.025), normal saline group (8.3%, P=0.005), and ETUS+ normal saline group (8.3%, P=0.005). The vascular recanalization rates in groups with different energy of ultrasound increased obviously as the radiated durations increased (P=0.006, 0.001), while no apparent effect of energy of ultrasound on the vascular recanalization rate was found in the groups with different radiated duration (Pgt;0.05). The eyes which had undergone ETUS treatment had retinal tissue damage and ultrastructure changes of the retinal ganglion cells (RGC), and deteriorated as the radiated duration increased. Conclusion ETUS may enhance the thrombolysis induced by urokinase in experimental retinal vein occlusion. Simultaneously, ETUS can lead to the damage of retinal tissue and changes of the ultrastructure of RGC. (Chin J Ocul Fundus Dis, 2007, 23: 166-169)
Objective To explore the clinical presentation and diagnosis and treatment of prehepatic portal hypertension (PPH) and discuss its surgical strategies. Methods Forty-six cases of PPH treated in the 2nd Artillery General Hospital and Peking Union Medical College Hospital from January 2000 to May 2009 were analyzed retrospectively, including 2 cases of Abernethy abnormality. All patients were evaluated by indirect portal vein angiography, CT angiography and (or) portal duplex system Doppler ultrasonography before treament. Surgical strategies included: 23 cases with meso-caval shunt, 8 cases with splenectomy and spleno-renal vein shunt, 1 case with porta-caval shunt, 2 cases with paraumbilical vein-jugular vein shunt, 3 cases with portal azygous disconnection, 1 cases with splenectomy and portal azygous disconnection, 1 case with sigmoidostomy and closed the fistula of sigmoid six months later, 1 case with resection of part of small intestine due to acute extensive thrombosis of portal vein system, 4 cases with selective superior mesenteric artery and (or) splenic artery thrombolytic infusion therapy, 2 cases remained no-surgical option and underwent conservative treatment. Results Forty-four patients were followed-up from 2 months to 5 years, average of 23.4 months, one patient without surgical treatment was lost. Satisfactory outcomes were obtained in 34 patients with various shunts, which expressed as a release of hypersplenism and gastrointestinal hemorrhage. Two cases were treated with meso-caval shunt because of rehemorrhage in month 13 and 24 and one died in month 8 after disconnection, one died on day 40 after thrombolytic therapy due to putrescence of intestines, one who remained no-surgical option underwent hemorrhage 4 months later, and then went well by conservative treatment. Conclusion The key of treatment of PPH is to reduce the pressure of hepatic portal vein. Surgical managements of shunt and selective superior mesenteric artery and (or) splenic artery thrombolytic infusion therapy are safe and effective, but individual treatment strategy should be performed.
Objective To systematically review the effectiveness of amiodarone in treating repurfusion arrhythmia (RA) after thrombolytic therapy for acute myocardial infarction (AMI), so as to provide high quality evidence for formulating the rational thrombolytic therapy for AMI. Methods Randomized controlled trails (RCTs) on amiodarone in treating RA after thrombolytic therapy for AMI were electronically retrieved in PubMed, EMbase, The Cochrane Library (Issue 3, 2012), CBM, CNKI, VIP and WanFang Data from inception to January, 2013. According to the inclusion and exclusion criteria, two reviewers independently screened literature, extracted data, and assessed quality. Then RevMan 5.1 software was used for meta-analysis. Results A total of 5 RCTs involving 440 patients were included. The results of meta-analysis suggested that, compared with the blank control, amiodarone reduced the incidence of RA after thrombolytic therapy in treating AMI (RR=0.60, 95%CI 0.48 to 0.74, Plt;0.000 01) and the incidence of ventricular fibrillation (RR=0.47, 95%CI 0.26 to 0.85, P=0.01). It neither affected the recanalization rate of occluded arteries after thrombolytic therapy (RR=1.00, 95%CI 0.88 to 1.15, P=0.94) nor decreased the mortality after surgery (RR=0.33, 95%CI 0.10 to 1.09, P=0.07). Conclusion Current evidence indicated that, amiodarone can decrease the incidence of RA. Unfortunately, the mortality rate can’t be reduced by amiodarone. Due to the limited quality and quantity of the included studies, more high quality studies are needed to verify the above conclusion
ObjectiveTo observe the effect of interventional thrombolytic therapy for central retinal artery occlusion (CRAO) with ipsilateral internal carotid artery occlusion via supratrochlear artery retrogradely or external carotid artery anterogradely.MethodsNine CRAO patients (9 eyes) were enrolled in this study, including 5 males and 4 females. The mean age was (45.2±18.1) years. The mean onset duration was 24 hours. There were 4 eyes with vision of no light perception, 3 eyes with light perception and 2 eyes with hand movement. Fundus fluorescein angiography (FFA) examination showed that the retinal artery was filled with delayed fluorescence. The peak of fluorescence was seen in the anterior part of the artery, and some of the eyes showed retrograde filling. The arm-retinal circulation time (A-Rct) was ≥35 s in 4 eyes, ≥35 s - <25 s in 5 eyes. The filling time of retinal artery and its branches (FT) was ≥15 s in 2 eyes, ≥12 s - <15 s in 3 eyes, ≥9 s - <12 s in 4 eyes. All the patients received the treatment of interventional thrombolytic therapy via supratrochlear artery retrogradely (8 eyes) or external carotid artery anterogradely (1 eye) according to the indications and contraindications of thrombolytic therapy in acute cerebral infraction patients. Urokinase (0.4 million U in total) was intermittently injected into the arteries. After artery thrombolysis, the changes of digital subtraction angiography (DSA), filling time of retinal artery and its branches on FFA within 24 hours and the visual acuity were observed. According to the A-Rct and FT on FFA, the therapeutic effects on retinal circulation were defined as effective markedly (A-Rct≤15 s, FT≤2 s) , effective (A-Rct was improved but in the range of 16 - 20 s, FT was in 3 - 8 s) and no effect (A-Rct was improved but ≥21 s, FT≥9 s). The related local or systemic complications were recorded.ResultsAfter the injection of urokinase into the catheter, the ophthalmic artery and its branches were increased in 6 eyes (66.7%), and the development of the eye ring was significantly more than that of the eyes before thrombolysis. The circulation time in ophthalmic artery was speeded up for 2 s before thrombolysis in 3 eyes, 3 s in 3 eyes, and 4 s in 2 eyes. Within 24 hours after thrombolysis treatment, the A-Rct was significantly decreased than that of before interventional therapy. The retinal circulation was effective markedly in 4 eyes (44.4%), effective in 4 eyes (44.4%) and no effect in 1 eyes (11.2%) . The vision was improved 3 lines in 4 eyes (44.4%), 2 lines in 3 eyes (33.3%), 1 line in 1 eye (11.2%) and no change in 1 eye (11.2%). There were no abnormal eye movements, vitreous hemorrhage and incision hematoma, intracranial hemorrhage, cerebral embolism, and other local and systemic adverse effectives during the follow-up.ConclusionsThe interventional thrombolytic therapy via supratrochlear artery retrogradely or external carotid artery anterogradely for CRAO with the ipsilateral internal carotid artery occlusion can improve retinal circulation and vision. There are no related local or systemic complications.
ObjectiveTo observe the clinical effect of the ophthalmic artery branch retrograde interventional therapy for central retinal artery occlusion (CRAO). MethodsFourteen CRAO patients (14 eyes) were enrolled in this study, including 8 males and 6 females. The age was ranged from 35 to 80 years old,with an average of (56.7±20.3) years. The duration of occurrence after the onset was 9 to 72 hours, with a mean of 22 hours. There were 4 eyes with vision of no light perception, 5 eyes with light perception and 5 eyes with hand movement. The intraocular pressure was ranged from 14-20 mmHg (1 mmHg=0.133 kPa), with an average of 19 mmHg. All the patients received the treatment of ophthalmic artery branch retrograde interventional therapy according to the indications and contraindications of thrombolytic therapy in acute cerebral infraction patients. Micro catheters was inserted into the exposed arteries from a skin incision below the eyebrow under guidance of digital subtraction angiography (DSA), urokinase (total 0.4 million U) and papaverine 30 mg were injected into the arteries. After artery thrombolysis, the changes of DSA, filling time of retinal artery and its branches on fluorescence fundus angiography (FFA) within 48 hours and the visual acuity were observed. According to the visual acuity of post-treatment and pre-treatment, the therapeutic effects on vision were defined as effective markedly (improving 3 lines or more), effective (improving 2 lines) and no effect (change within 1 line or a decline). According to the arm-retinal circulation time (A-Rct) and filling time of retinal artery and its branches (FT) on fluorescence fundus angiography (FFA), the therapeutic effects on retinal circulation were defined as effective markedly (A-Rct 15 s, FT 2 s), effective (A-Rct was improved but in the range of 16-20 s, FT was in 3-8 s) and no effect (A-Rct was improved but 21 s, FT 9 s). The follow up ranged from 5 to 21days, with a mean of 6 days. The related local or systemic complications were recorded. ResultsOphthalmic arterial catheterization under DSA was successful in all 14 eyes. After intermittent injection of drugs, ophthalmic artery and internal carotid artery displayed good images in DSA. The results showed enlargement of ophthalmic artery and its branches after injection of thrombolytic drugs by micro catheters. The circulation time in ophthalmic artery is speed up for 2 s before thrombolysis in 5 eyes, 3 s in 6 eyes, and 4 s in 3 eyes. Within 48 hours after thrombolysis treatment, the filling time of retinal artery and its branches on FFA was significantly increased than that of before interventional therapy. The retinal circulation was effective markedly in 8 eyes (57.1%), effective in 4 eyes (28.6%) and no effect in 2 eyes (14.3%). The vision changes showed effective markedly in 6 eyes (42.9%), effective in 6 eyes (42.9%), no effect in 2 eyes (14.2%). There was no abnormal eye movements, vitreous hemorrhage and incision hematoma, intracranial hemorrhage, cerebral embolism, and other local and systemic adverse effectives during the follow-up. ConclusionsThe ophthalmic artery branch retrograde interventional therapy in the treatment for CRAO can improve retinal circulation and vision. And there is no related local or systemic complications.