ObjectiveTo explore the feasibility of three-dimensional (3D) bioprinted adipose-derived stem cells (ADSCs) combined with gelatin methacryloyl (GelMA) to construct tissue engineered cartilage.MethodsAdipose tissue voluntarily donated by liposuction patients was collected to isolate and culture human ADSCs (hADSCs). The third generation cells were mixed with GelMA hydrogel and photoinitiator to make biological ink. The hADSCs-GelMA composite scaffold was prepared by 3D bioprinting technology, and it was observed in general, and observed by scanning electron microscope after cultured for 1 day and chondrogenic induction culture for 14 days. After cultured for 1, 4, and 7 days, the composite scaffolds were taken for live/dead cell staining to observe cell survival rate; and cell counting kit 8 (CCK-8) method was used to detect cell proliferation. The composite scaffold samples cultured in cartilage induction for 14 days were taken as the experimental group, and the composite scaffolds cultured in complete medium for 14 days were used as the control group. Real-time fluorescent quantitative PCR (qRT-PCR) was performed to detect cartilage formation. The relative expression levels of the mRNA of cartilage matrix gene [(aggrecan, ACAN)], chondrogenic regulatory factor (SOX9), cartilage-specific gene [collagen type Ⅱ A1 (COLⅡA1)], and cartilage hypertrophy marker gene [collagen type ⅩA1 (COLⅩA1)] were detected. The 3D bioprinted hADSCs-GelMA composite scaffold (experimental group) and the blank GelMA hydrogel scaffold without cells (control group) cultured for 14 days of chondrogenesis were implanted into the subcutaneous pockets of the back of nude mice respectively, and the materials were taken after 4 weeks, and gross observation, Safranin O staining, Alcian blue staining, and collagen type Ⅱ immunohistochemical staining were performed to observe the cartilage formation in the composite scaffold.ResultsMacroscope and scanning electron microscope observations showed that the hADSCs-GelMA composite scaffolds had a stable and regular structure. The cell viability could be maintained at 80%-90% at 1, 4, and 7 days after printing, and the differences between different time points were significant (P<0.05). The results of CCK-8 experiment showed that the cells in the scaffold showed continuous proliferation after printing. After 14 days of chondrogenic induction and culture on the composite scaffold, the expressions of ACAN, SOX9, and COLⅡA1 were significantly up-regulated (P<0.05), the expression of COLⅩA1 was significantly down-regulated (P<0.05). The scaffold was taken out at 4 weeks after implantation. The structure of the scaffold was complete and clear. Histological and immunohistochemical results showed that cartilage matrix and collagen type Ⅱ were deposited, and there was cartilage lacuna formation, which confirmed the formation of cartilage tissue.ConclusionThe 3D bioprinted hADSCs-GelMA composite scaffold has a stable 3D structure and high cell viability, and can be induced differentiation into cartilage tissue, which can be used to construct tissue engineered cartilage in vivo and in vitro.
Objective To investigate the feasibility of the complex of the fibrin sealant (FS) and the bone marrow mesenchymal stem cells(MSCs) to createanew cartilage in the nude mice by the issue engineering technique. Methods T he MSCs were isolated from healthy humans and were expanded in vitro. And then the MSCs were induced by the defined medium containing the transforming growth factor β1 (TGF-β1), dexamethasone, and ascorbic acid. The biomechanical properties of the chondrocytes were investigated at 7 and 14 days. The MSCs induced for 7days were collected and mixed with FS. Then, the FSMSCs mixture was injectedby a needle into the dorsum of the nude mice in the experimental group. In the tw o control groups, only FS or MSCs were injected respectively. The specimens were harvested at 6 and 12 weeks,and the ability of chondrogenesis in vivo was inve stigated by the gross observation, HE, Alcian Blue staining, and type Ⅱ collagen immunohistochemistry. Results The MSCs changed from a spindlel ike fibroblastic appearance to a polygonal shape when transferred to the defined medium, and couldbe induced to express the chondrocyte matrix. After an injection of the mixture , the cartilage-like tissue mass was formed, and the specimens were harvested from the mass at 6 and 12 weeks in the experimental group. The tissue mass at 6 we eks was smaller and relatively firm in texture, which had a distinct lacuna structure. And glycosaminoglycan (GAG) and Type II Collagen expressions were detecte d. The tissue mass at 12 weeks was bigger, firmer and glossier with the mature c hondrocytes lying in the lacuna structure. The positive Alcian blue and Collagen II immunohistochemistry stainings were ber at 12 weeks than at 6 weeks. But there was no cartilage-like tissue mass formed in the two control groups. Conclusion This study demonstrates that the fibrin sealant and the bone marrow mesenchymal stem cells can be successfully used in a constructing technique for the tissue engineered injectable cartilage.
Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.
Objective To evaluate the feasibility and the value of the layered cylindric collagenhydroxyapatite composite as a scaffold for the cartilage tissue engineering after an observation of how it absorbs the chondrocytes and affe cts the cell behaviors. Methods The chondrocytes were isolated and multiplied in vitro, and then the chondrocytes were seeded onto the porous collagen/h ydro xyapatite composite scaffold and were cultured in a three-dimensional environme n t for 3 weeks. The effects of the composite scaffold on the cell adhesivity, proliferation, morphological changes, and synthesis of the extracellular matrix were observed by the phase-contrast microscopy, histology, scanning electron micros copy, and immunohistochemistry. Results The pore diameter of the upper layer of the collagen-hydroxyapatite composite scaffold was about 147 μm. and the porosity was 89%; the pore diameter of the bottom layer was about 85 μm and the porosity was 85%. The layered cylindric collagenhydroxyapatite composite scaffold had good hydrophilia. The chondrocytes that adhered to the surface of the scaffold, proliferated and migrated into the scaffold after 24 hours. The chondrocytesattached to the wall of the microholes of the scaffold maintained a rounded morphology and could secrete the extracellular matrix on the porous scaffold. Conclusion The layered cylindric collagenhydroxyapatite composite scaffold has a good cellular compatibility, and it is ber in the mechanical property than the pure collagen. It will be an ideal scaffold for the cartilage tissue enginee ring.
Objective To introduce the application of polymer material, chitosan, in the cartilage tissue engineering. Methods The recent original articleson the application of chitosan in cartilage tissue engineering were extensivelyreviewed. The biocompatibility and biodegradation characters of chitosan and its application were analysed.Results Chitosan has a high degree of biocompatibility and a favorable chondrogenic characteristic. It can support the maintenance of the phenotypic morphology of chondrocytes besides being used as a scaffold for cell growth. Conclusion The perspect of the application of chitosan in cartilage tissue engineering is hopeful.
ObjectiveTo investigate whether subchondral bone microstructural parameters are related to cartilage repair during large osteochondral defect repairing based on three-dimensional (3-D) printing technique. MethodsBiomimetic biphasic osteochondral composite scaffolds were fabricated by using 3-D printing technique. The right trochlea critical sized defects (4.8 mm in diameter, 7.5 mm in depth) were created in 40 New Zealand white rabbits (aged 6 months, weighing 2.5-3.5 kg). Biomimetic biphasic osteochondral composite scaffolds were implanted into the defects in the experimental group (n=35), and no composite scaffolds implantation served as control group (n=5); the left side had no defect as sham-operation group. Animals of experimental and sham-operation groups were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after operation, while animals of control group were sampled at 24 weeks. Subchondral bone microstructural parameters and cartilage repair were quantitatively analyzed using Micro-CT and Wayne scoring system. Correlation analysis and regression analysis were applied to reveal the relationship between subchondral bone parameters and cartilage repair. The subchondral bone parameters included bone volume fraction (BV/TV), bone surface area fraction (BSA/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular spacing (Tb.Sp). ResultsIn the experimental group, articular cartilage repair was significantly improved at 52 weeks postoperatively, which was dominated by hyaline cartilage tissue, and tidal line formed. Wayne scores at 24 and 52 weeks were significantly higher than that at 16 weeks in the experimental group (P<0.05), but no significant difference was found between at 24 and 52 weeks (P>0.05); the scores of experimental group were significantly lower than those of sham-operation group at all time points (P<0.05). In the experimental group, new subchondral bone migrated from the surrounding defect to the centre, and subchondral bony plate formed at 24 and 52 weeks. The microstructural parameters of repaired subchondral bone followed a "twin peaks" like discipline to which BV/TV, BSA/BV, and Tb.N increased at 2 and 16 weeks, and then they returned to normal level. The Tb.Sp showed reversed discipline compared to the former 3 parameters, no significant change was found for Tb.Th during the repair process. Correlation analysis showed that BV/TV, BSA/BV, Tb.Th, Tb.N, and Tb.Sp were all related with gross appearance score and histology score of repaired cartilage. ConclusionSubchondral bone parameters are related with cartilage repair in critical size osteochondral repair in vivo. Microstructural parameters of repaired subchondral bone follow a "twin peaks" like discipline (osteoplasia-remodeling-osteoplasia-remodeling) to achieve reconstruction, 2nd week and 16th week are critical time points for subchondral bone functional restoration.
Objective To explore an experimental method of transfecting the marrow stromal stem cells (MSCs) with the reconstructed PGL3-t ransforming growth factor-β1 (TGF-β1) gene and to evaluate the feasibility of selfinduction of MSCs to the chondrocytes in vitro so as to provide a scientific and experimental basis for a further “gene enhanced tissue engineering” research. Methods The rabbit MSCs was transfected with the reconstructed PGL3-TGF-β1gene by the Liposo mesMethod, the growth of the cells were observed, and the growth curve was drawn. The living activity of the transfected cells in the experimental group was evalua ted by MTT, and the result was significantly different when compared with that in the control group. By the immunohistochemistry method (SABC), the antigens of TGF-β1 and collagen Ⅱ were examined at 2 and 7 days of the cell culture afte r transfe ction with PGL3-TGF-β1gene. The pictures of the immunohistochemistry slice were analyzed with the analysis instrument, and the statistical analysis was perfor med with the software of the SPSS 11.0, compared with the control group and the blank group. Results Transfection of the cultured rabbit MSCs in vitro with the reconstructed PGL3-TGF-β1gene by the Liposomes Method achie ved a success, with a detection of the Luceraferase activity. The result was significantly different from that in the control group (Plt;0.01). Tested by MTT, the living acti vity of the transfected cells was proved to be significantly decreased (Plt;0.01 vs. the control group). By the immunohistochemistry method (SABC) to study TGF-β1 positive particles were detected in the experimental group,but there were no positive particles in the control and the blank groups. There was a significant difference between the two groups of the experiment and the control group based on the analysis of the ttest (Plt;0.01). By the immunohistochemistry me thod (SABC) to study collagen Ⅱ, there were more positive particles in the transfected cells in t he experimental group than in the control and the blank groups, and there was a significant difference between the experimental group and the two other groups based on the t-test (Plt;0.01). Conclusion Transfection of the rabbit MSCs with the reconstructed PGL3-TGF-β1 gene by the Liposomes Method is successful. There may be some damage to the cells when transfection is performed. The transfecte d BMS cells with PGL3-TGF-β1 gene can express and excrete TGF-β1when cultured in vitro. The transfected MSCs that secret TGF-β1 can be self-induced into the chondrocytes after being infected for 7 days when cultured in vitro.
【Abstract】 Objective To develop a novel cartilage acellular matrix (CACM) scaffold and to investigate its performance for cartilage tissue engineering. Methods Human cartilage microfilaments about 100 nm-5 μm were prepared after pulverization and gradient centrifugation and made into 3% suspension after acellularization treatment. After placing the suspension into moulds, 3-D porous CACM scaffolds were fabricated using a simple freeze-drying method. The scaffolds were cross-l inked by exposure to ultraviolet radiation and immersion in a carbodiimide solution 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysucinimide. The scaffolds were investigated by histological staining, SEM observation and porosity measurement, water absorption rate analysis. MTT test was also done to assess cytotoxicity of the scaffolds. After induced by conditioned medium including TGF-β1, canine BMSCs were seeded into the scaffold. Cell prol iferation and differentiation were analyzed using inverted microscope and SEM. Results The histological staining showed that there are no chondrocytefragments in the scaffolds and that toluidine blue, safranin O and anti-collagen II immunohistochemistry staining werepositive. The novel 3-D porous CACM scaffold had good pore interconnectivity with pore diameter (155 ± 34) μm, 91.3% ± 2.0% porosity and 2 451% ± 155% water absorption rate. The intrinsic cytotoxicity assessment of novel scaffolds using MTT test showed that the scaffolds had no cytotoxic effect on BMSCs. Inverted microscope showed that most of the cells attached to the scaffold. SEM micrographs indicated that cells covered the scaffolds uniformly and majority of the cells showed the round or ell iptic morphology with much matrix secretion. Conclusion The 3-D porous CACM scaffold reserved most of extracellular matrix after thoroughly decellularization, has good pore diameter and porosity, non-toxicity and good biocompatibil ity, which make it a suitable candidate as an alternative cell-carrier for cartilage tissue engineering.
ObjectiveTo explore the clinical application and effectiveness of a personalized tissue engineered cartilage with seed cells derived from ear or nasal septal cartilage and poly-glycolic acid (PGA)/poly-lactic acid (PLA) as scaffold in patients with nasal reconstruction. MethodsBetween March 2014 and October 2015, 4 cases of acquired nasal defects and 1 case of congenital nasal deformity were admitted. The patient with congenital nasal deformity was a 4-year-old boy, and the source of seed cells was nasal septal cartilage. The other 4 patients were 3 males and 1 female, aged 24-33 years, with an average of 28.5 years. They all had multiple nasal subunit defects caused by trauma and the source of seed cells was auricular cartilage. The tissue engineered cartilage framework was constructed in the shape of normal human nasal alar cartilage and L-shaped silicone prosthesis with seed cells from cartilage and PGA-PLA compound biodegradable scaffold. The boy underwent nasal deformity correction and silicone prosthesis implantation in the first stage, and the prosthesis was removed and implanted with tissue engineered cartilage in the second stage; the remaining 4 adult patients all used expanded forehead flaps for nasal reconstruction. All 5 patients underwent 1-4 nasal revisions. The implanted tissue engineered cartilage was observed during the operation and taken from 2 patients for histological examination.ResultsAll the incisions healed by first intention after the tissue engineered cartilage implantation, and the expanded forehead flaps survived. Postoperative low fever occurred in 3 patients. No complications such as infection, obvious immune rejection response, and tissue engineered cartilage protrusion were found in all patients. All patients were followed up 9-74 months (mean, 54.8 months). During follow-up, the patients had no obvious discomfort in the nose and the ventilation function were good. All patients were satisfied with the nasal contour. Early-stage histological examination showed the typical cartilage characteristics in 1 patient after the implantation of tissue engineered cartilage. Late-stage histological examination in 1 patient of tissue engineered cartilage showed the characteristics of fibrous connective tissue; and the other showed there was remaining cartilage.ConclusionThe safety of tissue engineered cartilage constructed in vitro for reconstruction is preliminarily confirmed, but the effectiveness still needs further verification.
Objective To explore heterotopic chondrogenesis of canine myoblasts induced by cartilage-derived morphogenetic protein 2 (CDMP-2) and transforming growth factor β1 (TGF-β1) which were seeded on poly (lactide-co-glycolide) (PLGA) scaffolds after implantation in a subcutaneous pocket of nude mice. Methods Myoblasts from rectus femoris of 1-year-old Beagle were seeded on PLGA scaffolds and cultured in medium containing CDMP-2 and TGF-β1 for 2 weeks in vitro. Then induced myoblasts-PLGA scaffold, uninduced myoblasts-PLGA scaffold, CDMP-2 and TGF-β1-PLGA scaffold, and simple PLGA scaffold were implanted into 4 zygomorphic back subcutaneous pockets of 24 nude mice in groups A, B, C, and D, respectively. At 8 and 12 weeks, the samples were harvested for general observation, HE staining and toluidine blue staining, immunohistochemical staining for collagen type I and collagen type II; the mRNA expressions of collagen type I, collagen type II, Aggrecan, and Sox9 were determined by RT-PCR, the glycosaminoglycans (GAG) content by Alician blue staining, and the compressive elastic modulus by biomechanics. Results In group A, cartilaginoid tissue was milky white with smooth surface and slight elasticity at 8 weeks, and had similar appearance and elasticity to normal cartilage tissue at 12 weeks. In group B, few residual tissue remained at 8 weeks, and was completely degraded at 12 weeks. In groups C and D, the implants disappeared at 8 weeks. HE staining showed that mature cartilage lacuna formed of group A at 8 and 12 weeks; no cartilage lacuna formed in group B at 8 weeks. Toluidine blue staining confirmed that new cartilage cells were oval and arranged in line, with lacuna and blue-staining positive cytoplasm and extracellular matrix in group A at 8 and 12 weeks; no blue metachromatic extracellular matrix was seen in group B at 8 weeks. Collagen type I and collagen type II expressed positively in group A, did not expressed in group B by immunohistochemical staining. At 8 weeks, the mRNA expressions of collagen type I, collagen type II, Aggrecan, and Sox9 were detected by RT-PCR in group A at 8 and 12 weeks, but negative results were shown in group B. The compressive elastic modulus and GAG content of group A were (90.79 ± 1.78) MPa and (10.20 ± 1.07) μg/mL respectively at 12 weeks, showing significant differences when compared with normal meniscus (P lt; 0.05). Conclusion Induced myoblasts-PLGA scaffolds can stably express chondrogenic phenotype in a heterotopic model of cartilage transplantation and represent a suitable tool for tissue engineering of menisci.