west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Tissue engineered vessel" 1 results
  • COMPARISON BETWEEN CANINE DECELLUARIZED VENOUS VALVE STENT COMBINED WITH ENDOTHELIALPROGENITOR CELLS AND NATIVE VENOUS VALVE ON VENOUS VALVE CLOSURE MECHANISM IN NORMAL PHYSIOLOGICAL CONDITIONS

    Objective To compare canine decel luarized venous valve stent combining endothel ial progenitor cells (EPC) with native venous valve in terms of venous valve closure mechanism in normal physiological conditions. Methods Thirty-six male hybrid dogs weighing 15-18 kg were used. The left femoral vein with valve from 12 dogs was harvested to prepare decelluarized valved venous stent combined with EPC. The rest 24 dogs were randomly divided into the experimental group and the control group (n=12 per group). In the experimental group, EPC obtained from the bone marrowthrough in vitro ampl ification were cultured, the cells at passage 3 (5 × 106 cells/mL) were seeded on the stent, and the general and HE staining observations were performed before and after the seeding of the cells. In the experimental group, allogenic decelluarized valved venous stent combined with EPC was transplanted to the left femoral vein region, while in the control group, the autogenous vein venous valve was implanted in situ. Color Doppler Ultrasound exam was performed 4 weeks after transplantation to compare the direction and velocity of blood flow in the distal and proximal end of the valve, and the changes of vein diameter in the valve sinus before and after the closure of venous valve when the dogs changed from supine position to reverse trendelenburg position. Results General and HE staining observations before and after cell seeding: the decelluarized valved venous stent maintained its fiber and collagen structure, and the EPC were planted on the decelluarized stent successfully through bioreactor. During the period from the reverse trendelenburg position to the starting point for the closure of the valve, the reverse flow of blood occurred in the experimental group with the velocity of (1.4 ± 0.3) cm/s; while in the control group, there was no reverse flow of blood, but the peak flow rate was decreased from (21.3 ± 2.1) cm/s to (18.2 ± 3.3) cm/s. In the control group, the active period of valve, the starting point for the closure of the valve, and the time between the beginning of closure and the complete closure was (918 ± 46), (712 ± 48), and (154 ± 29) ms, respectively; while in the experimental group, it was (989 ± 53), (785 ± 43), and (223 ± 29) ms, respectively. There was significant difference between two groups (P lt; 0.05).After the complete closure of valve, no reverse flow of blood occurred in two groups. The vein diameter in the valve sinus of the experimental and the control group after the valve closure was increased by 116.8% ± 2.0% and 118.5% ± 2.2%, respectively, when compared with the value before valve closure (P gt; 0.05). Conclusion Canine decelluarized venous valve stent combined with EPC is remarkably different from natural venous valve in terms of the valve closure mechanism in physiological condition. The former rel ies on the reverse flow of blood and the latter is related to the decreased velocity of blood flow and the increased pressure of vein in the venous sinus segment.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content