west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Titanium implant" 3 results
  • EXPERIMENTAL STUDY ON PREFABRICATING IL IAC GRAFTS USING COMPOSITE BONE

    OBJECTIVE To investigate the feasibility of prefabricating a specified shape autograft capable of transfer using coral and type I collagen as a carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2). METHODS In this study, the composite of rhBMP-2, coral and type I collagen was made certain shape to prefabricate vascularized osteomuscular autograft capable of microvascular free tissue transfer and autogenous bone graft with certain shape and titanium implant in it. The composite was implanted in the iliac area in dog with the titanium implant at the same time. After 3 months and 4 and a half months of implantation, the composites were studied with gross measurement, X-ray, and histological examinations. RESULTS After 3 months, composited bone was turned to bone tissue, and the shape of iliac bone was changed with implant in it, bone interface was seen between new bone and implant. And new bone was matured after 4 and a half months. CONCLUSION Coral and type I collagen are effective carrier for rhBMP-2 to prefabricate vascular osteomuscular autograft with certain shape. The use of rhBMP-2 for tissue engineered microvascular free bone flaps has an unlimited potential and adds a new dimension to maxillofacial reconstruction.

    Release date:2016-09-01 10:26 Export PDF Favorites Scan
  • Progress in antibacterial coatings of titanium implants surfaces

    In recent years, bone implant materials such as titanium and titanium alloys have been widely used in the biomedical field due to their excellent mechanical properties and good biocompatibility. However, in clinical practice, bacterial adhesion to the material surface and postoperative infection issues may lead to implantation failure. Based on the antibacterial mechanism, this review elaborated on the antibacterial surface design of titanium implants from the aspects of anti-bacterial adhesion, contact sterilization and photocontrol sterilization. Surface modification of titanium or titanium-based alloy implants with different techniques can inhibit bacteria and promote osseointegration. Thus, the application range of multifunctional titanium-based implants in the field of orthopedics will be expanded.

    Release date: Export PDF Favorites Scan
  • The effect of surface modification strategies on biological activity of titanium implant

    The surface morphology of titanium metal is an important factor affecting its hydrophilicity and biocompatibility, and exploring the surface treatment strategy of titanium metal is an important way to improve its biocompatibility. In this study, titanium (TA4) was firstly treated by large particle sand blasting and acid etching (SLA) technology, and then the obtained SLA-TA4 was treated by single surface treatments such as alkali-heat, ultraviolet light and plasma bombardment. According to the experimental results, alkali-heat treatment is the best treatment method to improve and maintain surface hydrophilicity of titanium. Then, the nanowire network morphology of titanium surface and its biological property, formed by further surface treatments on the basis of alkali-heat treatment, were investigated. Through the cell adhesion experiment of mouse embryonic osteoblast cells (MC3T3-E1), the ability of titanium material to support cell adhesion and cell spreading was investigated after different surface treatments. The mechanism of biological activity difference of titanium surface formed by different surface treatments was investigated according to the contact angle, pit depth and roughness of the titanium sheet surface. The results showed that the SLA-TA4 titanium sheet after a treatment of alkali heat for 10 h and ultraviolet irradiation for 1 h has the best biological activity and stability. From the perspective of improving surface bioactivity of medical devices, this study has important reference value for relevant researches on surface treatment of titanium implantable medical devices.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content