Objective To investigate the effects of adenovirus-mediated melanoma differentiation-associated gene-7 (mda-7)/IL-24 and/or adriamycin (ADM) on transplanted human hepatoma in nude mice and to explore a new way for hepatoma gene therapy combined with chemotherapy. Methods The recombinant adenovirus vector carrying Ad.mda-7 was constructed; Ad.mda-7 and/or ADM were injected into the tumor-bearing mice. Their effects on the growth of the tumor and the survival time of the mice were observed. The expressions of VEGF and TGF-β1 were detected by an immunohistochemistry method. Results Ad.mda-7 was constructed and expressed in vivo successfully. Compared with other three groups 〔control group (43.4±1.67) d, ADM group (64.2±4.14) d, Ad.mda-7 group (61.4±1.67) d〕, the mice treated with Ad.mda-7 combined with ADM had longer average survival time 〔(83.8±4.82) d, P<0.01〕; the average size of tumor treated with Ad.mda-7 combined with ADM diminished significantly compared with that treated with ADM or Ad.mda-7 separately (P<0.01). VEGF and TGF-β1 expressions of Ad.mda-7 group were (56.2±7.7)%, (35.2±4.5)%, respectively, and were lower than those in ADM group (VEGF: P<0.05; TGF-β1: P<0.01). VEGF expression of Ad.mda-7+ADM group was (37.3±5.0)%, and was significantly lower than that in other three groups (P<0.01). TGF-β1 expression of Ad.mda-7+ADM group was (31.2±3.1)% and significantly lower than that in control group and ADM group (P<0.01), however, there was no significant difference compared with Ad.mda-7 group (Pgt;0.05). Conclusion Ad.mda-7 combined with ADM has b antitumor potency and synergistic effects and suppresses the growth of human HCC xenograft in nude mice, possibly by inducing the apoptosis of hepatoma cell lines and suppressing tumor angiogenesis.
Objective To investigate the effects of exogenous bone morphogenetic protein(BMP) and transforming growth factor-β(TGF-β) on biomechanical property for ulna of fracture healing.Methods Thirty-six adult rabbits were made the model of right ulnar fracture and treated locally with TGF-β/PLA, BMP/PLA,TGF-β+BMP/PLA or PLA(as control group). Fracture healing was evaluated by measurement of the mechanical parameters and geometric parameters.Results As compared with control group, the geometric parameters, the bending broken load, the ultimatebending strength, the bending elastic modulus, the ultimate flexural strength, the flexural elastic modulus, the ultimate compressing strength, the compressingelastic modulus, and the ultimate tensile strength for ulna of fracture healingincreased significantly in the treatment groups(P<0.01). These parameters were higher in TGF-β+BMP/PLA group than in TGF-β/PLA group or in BMP/PLA group andin TGF-β/PLA group than in BMP/PLA group(P<0.05). There was no significant difference in bone density between the treatment groups and control group. Conclusion Local application of exogenous TGF-β and BMP canincrease the callus formation and enhance biomechanical strength of bone after fracture healing. A combination of TGF-β and BMP has synergetic effect in enhancing fracture healing.
Objective To observe the expression and distribution of transforming growth factor-β1 (TGF-β1) in the healing process of bile duct and discuss its function and significance in the process of benign biliary stricture formation. Methods An injury to bile duct of dog was made and then repaired. The expression and distribution of TGF-β1 in the tissue at different time of the healing process were studied after operation with immunohistochemical SP staining. Results TGF-β1 staining was observed in the granulation tissue, fibroblasts and endothelial cells of blood vessels. High expression of TGF-β1 was observed in the healing process lasting for a long time. Conclusion The high expression of TGF-β1 is related closely with the fibroblast proliferating activity, extracellular matrix overdeposition and scar proliferation in the healing process of bile duct.
Objective To study the pathology and possible mechanism of experimental hydrochloric acid(HCl) inhalation-indued pulmonary fibrosis in rats.Methods 120 male SD rats were randomly divided into a nomal control group,a bleomycin group,a high dose HCl group,a middle dose HCl group and a low dose HCl group.The bleomycin group was intratracheally injected with bleomycin once to induce pulmonary fibrosis.The three HCl groups were intratracheally injected with HCl once per week.The control group was given saline by the same way.Six rats of each group were randomly sacrificed on day 7,14,28 and 42 respectively.The histological changes of lung tissue were studied by HE and Masson’s trichrome staining.Hydroxyproline level in lung tissue was measured by digestion method.Protein and mRNA expression of transforming growth factor-β1(TGF-β1) were assayed by immunohistochemistry and RT-PCR respectively.Results Alveolitis in three HCl groups was significantl compared to control group,most severe at the second week,then remained at a high level which was equivalent to or exceeded the level of the bleomysin group after 28 days.Pulmonary fibrosis in three HCl groups was also significantly more severe than that in the control group,but milder than that in the bleomysin group.The high-dose and middle-dose HCl groups were not significantly different from the bleomysin group on day 42.There was no difference between three HCl groups in the earlier period,but the high-dose HCl group has a significantly difference from low-dose group on day 42.The content of hydroxyproline in high-dose and middle-dose HCl groups was also significantly higher than that in the control group.On day 42 hydroxyproline content in high-dose HCl dose rather middle –or low dose group was similiar with the level of bleomysin group.Content of TGF-β1 mRNA in three HCl groups was comparable to the level of bleomysin group on day 28 and exceeded on day 42.The expression of TGF-β1 in three HCl groups was not significantly different from the bleomysin group on day 42.Conclusion Experimental acid aspiration might contribute to pulmonary fibrosis in rats.Acid induced alveolar epithelial cell damage,abnormal proliferation and repair and fibrosis could be involved..
ObjectiveTo investigate the effect of dust fine particles on tumor necrosis factor-α (TNF-α), matrix metalloproteinase (MMP), transforming growth factor-β1 (TGF-β1), and collagens in the lung tissue of rats.MethodsAccording to random number table method, 96 male Wistar rats were divided into an untreated control group, a treated control group and an experimental group, with 32 rats in each group. The experimental group was exposed to the wind tunnel simulation of sandstorm (5 days per week, 5 hours per day); the untreated control group was put in the standard living environment next to the wind tunnel; the treated control group was exposed to the same wind tunnel simulation of sandstorm for 5 hours every day, the speed of wind was the same as the experimental group, but without dust; On the 30th, 60th, 90th, and 120th day, the levels of TNF-α, MMP-2, MMP-9, TGF-β1, lung collagen type Ⅰ and Ⅲ in the lung tissue of rats were determined by enzyme linked immunosorbent assay.ResultsCompared with the untreated control group and the treated control group, the content of TNF-α was higher in the experimental group on 30th, 60th, 90th and 120th day (all P<0.05). The contents of MMP-9 and MMP-2 in the experimental group on 60th and 90th day were significantly higher than those in the untreated group and the treated control group, respectively (all P<0.05). On the 30th, 60th, 90th, and 120th day, the content of TGF-β1 in the experimental group was significantly higher compared with the two control groups (all P<0.05). The contents of lung collagen type Ⅰ and type Ⅲ were higher in the experimental group on 60th, 90th and 120th day, respectively, compared with the two control groups (all P<0.05).ConclusionsThe strong sandstorm environmental exposure to a certain period of time can promote lung interstitial collagen deposition in rat. With the prolonged exposure time, the deposition of collagen increases. TNF-α, MMP-2, MMP-9 and TGF-β1 may all participate and induce the process of pulmonary fibrosis.
Objective To review the recent advances in transforming growth factor-β(TGF-β) super family study and its role in new bone formation. Methods The latest original articles related to this subject were retrieved extensively,especially the effect of TGF-β, bone morphogenetic proteins(BMPs) and activin(ACT) on distractionosteogenesis. Results TGF-β, BMPs and ACT play important roles in prompting new bone formation and each of them has different effects. Among them, TGF-β can stimulate the proliferation of osteoblast and synthesis ofextra cellular medium; BMPs can initiate the differentiation of interstitial cell toosteocyte; then ACT displays the combine effect of above two factors. Conclusion TGF-β superfamily can regulate new bone formation and thus shorten the course of mandibular distraction osteogenesis.
Objective To investigate the effect of transforming growth factor-β1 (TGF-β1) gene transfer on the biological characteristics of osteoblasts. Methods The expression of TGF-β1 in the transfected osteoblasts was detected by in situ hybridization and assay of TGF-β1 activity in the supernatant (minklung epithelium cell growth -inhibition test). The effects of gene transfer andsupernatant of the transfected osteoblasts on the proliferation and alkaline phosphatase(ALP) activity of osteoblasts were detected by 3 H-TdR and MTT. Results The results of in situ hybridization analysis suggested that the osteoblasts transfected by TGF-β1 gene could express TGF-β1 obviously. The complex medium, which was the mixture of serum-free DMEM and the activated supernatant according to 1∶1, 1∶2, 1∶4, could inhibit growth of Mv-1-Lu evidently and the ratios ofinhibition were 16.3%, 22.7%, 28.2% respectively. TGF-β1 gene transfer hadno effect on the biological characteristics of osteoblasts, but the activated supernatant of transfected osteoblasts stimulated proliferation and inhibited ALPactivity of osteoblasts. Conclusion TGF-β1 gene transfer promotes the expression of TGF-β1 and the biological characteristics of trasfected osteoblasts are stable, which is helpful for gene therapy of bone defects in vivo.
Objective To explore the effectiveness of the transforming growth factor-β1(TGF-β1) and tumor necrosis factor-α(TNF-α) inducing human bronchial epithelial(HBE) cells to optimize epithelia-mesenchymal transformation(EMT) model. Methods Blank control, TGF-β1 10 ng/ml, TNF-α 10 ng/ml, TGF-β1 10 ng/ml+TNF-α 10 ng/ml induced human epithelial cells for 24 hours. Then the change of morphological alteration were observed by applying CCK8, cells migration assay and Western blot technique. Results When TGF-β1 plus TNF-α induced human epithelial cells for 24 hours, most of HBE cells traits changed including morphological alteration from cobblestone to fusiform, connection between cells vanishing, intercellular space broadening. In the experiments of checking cell migration capacity by the vitro scratch test, the group spacing was 420.06±10.38 μm in the blank control group, 499.86±34.00 μm in the TGF-β1 10 ng/ml group, 514.93±10.56 μm in the TNF-α 10 ng/ml group, 569.68±33.58 μm in the TGF-β1 10 ng/ml+TNF-α10 ng/ml group. TGF-β1 cooperated with TNF-α led to scratch spacing narrowing significantly. Western blot analysis showed that expression of E-cadherin and Vimentin varied significantly in the TGF-β1+TNF-α group. Conclusion Inducing human bronchial epithelial cell by TGF-β1 cooperated with TNF-α optimizes EMT model.
OBJECTIVE: To localize the distribution of basic fibroblast growth factor (bFGF) and transforming growth factor-beta(TGF-beta) in tissues from dermal chronic ulcer and hypertrophic scar and to explore their effects on tissue repair. METHODS: Twenty-one cases were detected to localize the distribution of bFGF and TGF-beta, among them, there were 8 cases with dermal chronic ulcers, 8 cases with hypertrophic scars, and 5 cases of normal skin. RESULTS: Positive signal of bFGF and TGF-beta could be found in normal skin, mainly in the keratinocytes. In dermal chronic ulcers, positive signal of bFGF and TGF-beta could be found in granulation tissues. bFGF was localized mainly in fibroblasts cells and endothelial cells and TGF-beta mainly in inflammatory cells. In hypertrophic scar, the localization and signal density of bFGF was similar with those in granulation tissues, but the staining of TGF-beta was negative. CONCLUSION: The different distribution of bFGF and TGF-beta in dermal chronic ulcer and hypertrophic scar may be the reason of different results of tissue repair. The pathogenesis of wound healing delay in a condition of high concentration of growth factors may come from the binding disorder of growth factors and their receptors. bFGF may be involved in all process of formation of hypertrophic scar, but TGF-beta may only play roles in the early stage.
ObjectiveTo summarize the research advancement of peroxisome proliferator-activated receptor γ (PPARγ) agonists inhibiting transforming growth factor-β (TGF-β)-induced organ fibrosis. MethodsThe related literatures on PPARγ agonists inhibiting TGF-β-induced organ fibrosis were reviewed. ResultsTGF-β was a major fibrosispromoting cytokine, which could promote a variety of organ fibrosis. PPARγ agonists could effectively block TGFβ signal transduction, and then suppressed organ fibrosis well. ConclusionsThe main antifibrotic mechanism of PPARγ agonists is to inhibit TGF-β signal transduction. The studies on this mechanism will help promoting the clinical application of PPARγ agonists, and provide a new way of the treatment for organ fibrosis.