west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Upper limbs" 3 results
  • CLINICAL OBSERVATION OF TRAUMATICALLYDAMAGED JOINT AFTER ITS REPAIR WITH TRANSPLANTATION OF ALLOGENIC JOINT

    Objective To evaluate the long-term function of the traumaticallydamaged joint after its repair with transplantation of a fresh or a frozen allogenic joint. Methods From March 1977 to September 1993, 13 patients (9 males, 4females; age, 17-55 years) with traumatically-damaged joints underwent transplantation of the fresh or the frozen allogenic joints. Five patients had 5 damagedmetacarpophalangeal joints, 6 patients had 9 damaged interphalangeal joints, and 2 patients had 2 damaged elbow joints. So, the traumatic damage involved 13 patients and 16 joints. All the metacarpophalangeal joints and the interphalangeal joints were injured by machines and the 2 elbow joints were injured by road accidents. The patients were randomly divided into 2 groups: Group A (n=7) andGroup B (n=6). The 7patients with 8 joints in Group A underwent transplantation of fresh allogenic joints; the 6 patients with 8 joints in Group B underwent transplantation of frozen allogenic joints. The allogenic joint transplants were performed in the period from immediately after the injuries to 6 months after the injuries. The motion ranges of the transplanted joints and the X-ray films were examined after operation, and the immunological examination was performed at 8 weeksafter operation. Results The time for synostosis was 5-8 months in Group A, but4-6 months in Group B. In Group A, at 2 years after operation the metacarpophalangeal flexion was 30-40° and the interphalangeal flexion was 20-30°; however,at 6 or 7 years after operation the interphalangeal flexion was only 10-20°. The patients undergoing the transplantation with fresh elbow joints had the elbowflexion of 60° and the elbow extension of 0°, and had the forearm pronation of 30°and the forearm supination of 30°. But in Group B, at 2 years after operation the metacarpophalangeal flexion was 6070° and the interphalangeal flexionwas 40-50°; at 6 or 7 years after operation the interphalangeal flexion was still 40-50°. However, the patients undergoing the transplantation with frozen elbow joints had the elbow flexion of 90° and the elbow extension of 0°, and hadthe forearm pronation of 45° and a forearm supination of 45°. The joint motion ranges, the Xray findings, and the immunological results in the patients undergoing the transplantation of the frozen allogenic joints were significantly better than those in the patients undergoing the transplantation of fresh allogenicjoints. There was a significant difference in the immunological examination between Group A and Group B (IL2, 21.64±3.99;CD4/CD8,3.88±0.82 vs.IL-2,16.63±3.11;CD4/CD8, 2.53±0.23, P<0.01). Conclusion Repairing the traumatically-damaged joints with frozen allogenic joints is a better method of regaining the contour, movement, and complex motion of the hands. 

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • EXPERIENCE OF TREATING FIREARM-WOUND IN UPPER LIMBS WITH VESSEL PEDICEL TISSUE FLAP

    OBJECTIVE: To study the clinical result of treating firearm-wound with the vessel pedicel tissue flap. METHODS: From May 1992 to October 2000, 21 cases of firearm-wound of upper limbs underwent transplantation with the vessel pedicel tissue flap. Of them, the locations of the wound were upper arm in 11 cases, forearm in 7 cases, hand in 3 cases. The size of wound was 1.0 cm x 0.5 cm to 8.0 cm x 6.5 cm; the wound course was 3 minutes to 8 hours with an average of 3 hours and 30 minutes. The patients were followed up 3 months to 2 years. RESULTS: In 21 cases, the results were excellent in 19 cases and poor in 2 cases. The good rate was 90.5%. CONCLUSION: Treatment of firearm-wound with vessel pedicel tissue flap has the good effect.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • Virtual reality for the upper limb motor rehabilitation after stroke

    Stroke can lead to dysfunction of movement, sensation, cognition and other functions, eventually affect the quality of life of patients. Many patients suffer from severe and persistent upper limb dysfunction. Upper limb rehabilitation has always been a focus in clinical practice and scientific research of rehabilitation field. As an emerging technology, virtual reality (VR) provides simulated environments for patients to enhance their participation and experience, and has been more and more widely used in stroke rehabilitation. This paper reviews the application and research progress of VR in upper limb rehabilitation after stroke, discusses the current evidences based on both the independent application of VR and the application of VR combined with other rehabilitation interventions, and indicates that VR can play a positive role in promoting the upper limb strength and coordination of stroke patients and enhancing their motivation to participant in rehabilitation. In the future, more high-quality studies are needed to further confirm the efficacy and optimal parameter settings.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content