west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Vascular endothelial cell" 18 results
  • Research Progress of Adjustment Mechanism between MicroRNA and Vascular Endothelial Cell Function

    Vascular endothelial cell(VEC) is a kind of simple squamous epithelium lined on the inner surface of blood vessels. VEC is an important barrier between the blood and tissue and it also plays a key role in regulating inflammation, thrombosis, endothelial cells mediated vasodilatation and endothelial regeneration. These processes should be controlled by a variety of complex mechanism which requires us to find out. With results of the researches in vascular endothelial cell function, the important roles that microRNA in vascular endothelial cell function draws more and more researchers' attention. MicroRNAs control gene expression in post-transcriptional level and affect the function of endothelial cells. This review focuses on the research progress on regulatory mechanism of microRNA to endothelial cell inflammation, thrombosis, vasodilation and endothelium regeneration.

    Release date: Export PDF Favorites Scan
  • Injury Mechanism of Vascular Endothelial Cells in Atherosclerosis

    ObjectiveTo summarize the progress on the injury mechanism of vascular endothelial cells in atherosclerosis.MethodsThe latest progress was reviewed in recent literatures.ResultsAll kinds of etiological factors have activated NF-kappa B and cytokines in the development of atherosclerosis, which lead to expression of cell adhesive molecules and adhesion of monocytes to vascular endothelial cells.A variety of inflammatory mediums are released, which can directly damage endothelial cells.Besides, the inflammatory mediums make monocytes and neutrophils attach to endothelial cells by immune mechanisms, which injure the endothelial cells more severely. Meanwhile the damaged membrance structure leads to the production of AECA which activates the complementary system. Then the vascular endothelial cell injury is aggravated and the development of atherosclerosis accelerated. ConclusionIt is very important to recognize the injury mechanism of vascular endothelial cells in the development of atherosclerosis for prevention and treatment of atherosclerosis.

    Release date:2016-08-28 04:43 Export PDF Favorites Scan
  • Effect of Different Flow Fields on Nuclear Factor -κB and Activator Protein-1 Expression in Vascular Endothelial Cells

    Objective To investigate the expression of transcription factors including nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) in vascular endothelial cells (ECs) in different flow fields, and provide experimental evidence for mechanical signal effects on gene regulation pattern of ECs. Methods Cultured human umbilical vein ECs were loaded into steady flow chambers of laminar flow or turbulent flow and observed at 6 time points (0.5 h, 1 h, 2 h, 3 h, 4 h and 5 h) based on different load time. Spacial and temporal characteristics of NF-κB and AP-1 expression in ECs in different flow chambers were detected at a protein level by laser confocal microscope. Results In laminar flow, NF-κB expression rose to peak at 1 hour (26.49±1.63, P<0.05)and then declined. In turbulent flow, NF-κB expression rose to peak at 3 hours (34.41±6.43, P<0.05). In laminar flow, c-Jun/AP-1 expression was transiently elevated, reached its peak at 0.5 hour (18.95±5.38,P<0.05)and then fell to its baseline level. In turbulent flow, c-Jun/AP-1 expression rose slowly but steady to peak(P<0.05) . Conclusion The effects of turbulent flow on NF-κB and AP-1 expression in ECs are different from those of laminar flow. Up-regulation and activation of NF-κB and AP-1 expression in ECs induced by turbulent flow may cause pathological changes in morphological structure and functional behavior of ECs.

    Release date:2016-08-30 05:50 Export PDF Favorites Scan
  • Expression of Eselectin on Vascular Endothelial Cells in Nude Mice Liver Induced by Esophageal Carcinoma Cells

    Abstract: Objective To study the expression of E-selectin on vascular endothelial cells of nude mice liver induced by esophageal carcinoma cells, in order to find out the function of E-selectin in the metastasis of esophageal carcinoma into the liver. Methods Twelve Balb/c nude mice aged from 6 to 8 weeks with their weight ranged between 20 and 25 grams were selected in our research. The mice were equally distributed into the experimental group and the control group(n=6). EC9706 cell solution (5×10.6/0.02 ml) were injected beneath the splenic capsule of the mice in the experimental group. One hour later, spleen was removed. For the mice in the control group, after laparotomy, phosphate buffer without EC 9706 was injected beneath the splenic capsule and spleen was also removed one hour after the injection. Eight hour later, we resected the liver of the nude mice, and expression of E-selectin on vascular endothelial cells of the liver was detected with reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). Results In the experimental group, 8 hours after injection of EC9706 cells (5×10.6), the results of RT-PCR showed expression of E-selectin mRNA in the liver, and IHC showed a positive protein expression of E-selectin in the cytosol and membrane of hepatic sinus vessels.However, no E-selectin mRNA expression was found in the control group and IHC showed a negative protein expression of E-selectin. Conclusion Human esophageal carcinoma cell line EC9706 can induce balb/c mice liver vascular endothelial cell E-selectin expression, which shows that EC9706 may stay in the liver and form etastatic focus.

    Release date:2016-08-30 06:02 Export PDF Favorites Scan
  • ISOLATION, CULTURE, AND IDENTIFICATION OF CANINE UMBILICAL VEIN VASCULAR ENDOTHELIAL CELLS

    Objective To establish a simple and efficient method to isolate and culture the umbilical vein vascular endothelial cells in canine. Methods Twelve umbilical cords [(13.0 ± 1.5) cm in length] were taken from 12 newborn pups of Beagles. And then the vascular endothelial cells were isolated from these umbilical cords digested by 1% collagenase type I for 5, 7, and 10 minutes respectively (4 umbilical cords in each group). After cultured, the vascular endothelial cells were identified by morphology, immunofluorescence, and flow cytometry. And the growth curvature of umbilical vein vascular endothelial cells was detected by MTT assay. Results Few vascular endothelial cells were collected at 5 and 10 minutes after digestion; many vascular endothelial cells were seen at 7 minutes, and became cobblestone with culture time, with a large nucleus; after passage, cell morphology had no obvious change. Fluorescence microscope results showed that positive von Willebrand factor (vWF) and CD31 cells were observed in most of cells. The flow cytometry test displayed that the positive cell rates of vWF and CD31 were 99.0% ± 0.7% and 98.0% ± 1.2%, respectively. The above results indicated that cultured cells were vascular endothelial cells. MTT assay showed that vascular endothelial cells proliferation increased significantly with culture time. Conclusion Enzyme digestion is a convenient method to isolate vascular endothelial cells from canine umbilical vein, and a large number of cells and high purity of cells can be obtained by the method.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON DIFFERENTIATION OF ADULT MARROW MESENCHYMAL STEM CELLS INTO VASCULAR ENDOTHELIAL CELLS IN VITRO

    Objective To study the differenation of adult marrow mesenchymal stem cells(MSCs) into vascular endothelial cells in vitro and to explore inducing conditions. Methods MSCs were isolated from adult marrow mononuclear cells by attaching growth. MSCs were divided into 4 groups to induce: the cells seeded at a density of 5×103/cm2 in 2% and 15% FCS LDMEM respectively (group1 and group 2), at a density of 5×104/cm2 in 2% and 15% FCS LDMEM respectively (group 3 and group 4); vascular endothelial growth factor(VEGF) supplemented with Bovine pituitary extract was used to induce the cell differentiation. The differentiated cells were identified by measuring surfacemarks (CD34, VEGFR2, CD31 and vWF ) on the 14th day and 21st day and performed angiogenesis in vitroon the 21st day.The cell proliferation index(PI)of different inducing conditions were measured. Results After induced in VEGF supplemented with Bovine pituitary extract, the cells of group 3 expressed the surface marks CD34, VEGFR-2, CD31 and vWF on the 14th day, the positive rates were 8.5%, 12.0%, 40.0% and 30.0% respectively, and on the 21st day the positive ratesof CD34 and VEGFR2 increased to 15.5% and 20.0%, while the other groups did not express these marks; the induced cells of group 3 showed low proliferating state(PI was 10.4%) and formed capillary-like structure in semisolid medium. Conclusion Adult MSCs can differentiate into vascular endothelial cellsafter induced by VEGF and Bovine pituitary extract at high cell densities and low proliferatingconditions,suggesting that adult MSCs will be ideal seed cells forthe therapeutic neovascularization and tissue engineering.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • PROMOTING EFFECT OF ESTROGEN AND BASIC FIBROBLAST GROWTH FACTOR ON PROLIFERATIONOF HEMANGIOMA VASCULAR ENDOTHELIAL CELL IN VITRO

    Objective To observe the influences of estradiol (E2), basic fibroblast growth factor (bFGF), and tamoxifen (TAM) on the proliferation of hemangioma vascular endothelial cell (HVEC). Methods Two strawberry hemangioma from 2 infants (case 1 and case 2) were prepared for HVEC culture. The HVEC on passage 3 were cultured in estrogenfree improved minimum essential medium (IMEM) and subjected to various treatments with 100 pg/ml 17-β-E2, 10 ng/ml bFGF, and 1×10-6 mol/L 4-OH-tamoxifen(4-OH-TAM). The experiment was divided into 5 groups: group 1(IMEM, control group), group 2(17-β-E2), group 3(bFGF), group 4(17-β-E2/bGFG) and group 5(17-β-E2/bGFG/4-OH-TAM). The cell count(CC) and DNA proliferation index (PI) were determined. Results Two cases of HVEC were successfully cultured in vitro. The HVEC showed cobblestoneslike under microscopy and factor Ⅷrelated antigen(also named as von Willebrand factor,vWF) was positive by immunochemical staining. At 9 days in case 1: CC and PI remained unchanged in the control group; CC and PI were slightly increased in group 2, being 1.4 and 1.6 times as much as those in the control group respectively (P<0.05); CC and PI significantly increased in group 3, being2.6 and 2.3 times as much as those in the control group respectively (P<0.01); CC and PI increased remarkably in group 4, being 3.7 and 2.9 times as much as those in thecontrol group respectively (P<0.01); CC and PI were down to the levels of controls in group 5(P>0.05). The results in case 2 were similar to those in case 1. Conclusion In vitro, the promoting effect of bFGF on HVEC proliferation is much ber than that of estrogen. Estrogen and bFGF enhance this proliferation in a synergistic manner, which can be inhibited by tamoxifen.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • COMPARISON OF EFFECTS OF FLAP DELAY AND VASCULAR ENDOTHELIAL GROWTH FACTOR ON THE VIABILITY OF THE RAT DORSAL FLAP

    Objective To compare the effects of flap delay and vascular endothelial growth factor (VEGF) on the viability of the rat dorsal flap. Methods Thirty rats were divided into 3 groups: saline group, flap delay group and VEGF group. The rats in flap delay group underwent flap delay by keeping bipedicle untouched, and the cranial pedicle was cut 7 days later. The rats in VEGF group were given VEGF solution locally when the flaps were elevated in the operation. The ratsin saline group were given saline solution in the same way. Five days after thesingle pedicle flaps were performed, the flap survival rate was measured. Theflap tissues were collected to measure and analyze the microvascular density, diameter and sectional area by immunochemical method. Results The flap survival rate of flap delay group was similar to that of VEGF group andthere is no statistically significant difference(Pgt;0.05). The vascular diameter of flap delay group was much larger than that of saline group and VEGF group, showing statistically significant difference (Plt;0.05). The vascular density of VEGF group was much higher than that of saline group and flap delay group, showing statistically significant difference (Plt;0.05). The vascular sectional area of flap delay group was similar to that of VEGF group(Pgt;0.05). Conclusion The change in the flap after flap delayis manifested as obvious dilatation of microvessels, while the change in the flap after the injection of VEGF is manifested as obvious vascular proliferation. Both flap delay and VEGF can increase the vascular sectional area and the viability of the flap, but the mechanism is different.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • EFFECT OF VASCULAR ENDOTHELIAL CELL GROWTH FACTOR ON REPAIR OF BONE DEFECT WITH CORTICAL BONE ALLOGRAFT

    Objective To study the effect of vascular endothelial cell growth factor (VEGF) on repair of bone defect with cortical bone allograft. Methods Forty five New Zealand white rabbits, weighted 2.5-3.0 kg, were made bone defect model of 1.5 cm in length in the bilateral radii and then were randomly divided into 3groups. The defect was repaired with only cortical bone allograft in the control group, with the cortical bone allograft and local injection of human recombinantVEGF in the experimental group, and with the cortical bone allograft and abdominal injection of VEGF PAb3 in the antagonist group. Roentgenography, immunohistochemical staining and tetracycline labelling were carried out to evaluate the reparative results 1, 3, 5, 8 and 16 weeks after operation. Results Immunohistochemical staining results showed that a great deal of blood vessels formed in the experimental group, and the number of blood vessels increased gradually with the time and reached the highest value at the 8th week. Tetracyclinelabelling showed the same result.The best results in callus formation, ossification rate and count of microvascular density were shown in the experimental group, while those in the control group were significantly better than those in the antagonist group (Plt;0.05),but there was no significant difference between the experimental group and the control group at the 8th week and the 16th week (Pgt;0.05). Conclusion VEGF can accelerates the bone formation and angiogenesis in the bone allografts, thus it can promote the repair of bone defects.

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
  • EFFECT OF EXOGENOUS BASIC FIBROBLAST GROWTH FACTOR ON PROLIFERATION AND MIGRATION OFENDOTHELIAL CELLS OF PARTIAL THICKNESS SCALD IN RATS

    Objective To observe the proliferation and migration of endothelial cells after 30% total burn surface area (TBSA) of deep partial thickness scald, and the effect of basic fibroblast growth factor (bFGF) on angiogenesis during wound healing.Methods A total of 133 male Wistar ratswere divided randomly into normal control (n=7), injured control group (n=42), bFGF group (n=42) andanti-c-fos group (n=42). The apoptosis expression of fibroblasts was determinedwith in situ hybridization and the changes of proliferation cell nuclear antigen(PCNA), focal adhesion rinase(FAK), c-fos and extracellular signalregulated kinase(ERK) proteins expression were detected with immunohistochemistry staining technique after 3 hours, 6 hours, 1 day, 3 days, 7 days, 14 days and 21 days of scald.Results In injured control group and bFGF group, theproliferation rate of the vascular endothelial had evident changes 7 days and14 days after scald; the expression of FAK was increased 14 days after scald. ERK proteins expression was different between injury control group and bFGF group at initial stage after scald. Stimulation of ERKs by bFGF led to up-regulation of c-fos and b expression of FAK. Conclusion Exogenous bFGF extended the influence on wound healing process by ERK signaling pathway, affecting migration cascade of vascular endothelial cell. The oncogene proteins play an important role on accelerating angiogenesis duringwound healing.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content