west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Vasculogenesis" 4 results
  • EFFECT OF SIMVASTATIN ON INDUCING ENDOTHELIAL PROGENITOR CELLS HOMING AND PROMOTING BONE DEFECT REPAIR

    Objective To investigate the effect of simvastatin on inducing endothel ial progenitor cells (EPCs) homing and promoting bone defect repair, and to explore the mechanism of local implanting simvastatin in promoting bone formation. Methods Simvastatin (50 mg) compounded with polylactic acid (PLA, 200 mg) or only PLA (200 mg) was dissolved in acetone (1 mL) to prepare implanted materials (Simvastatin-PLA material, PLA material). EPCs were harvested from bone marrow of 2 male rabbits and cultured with M199; after identified by immunohistochemistry, the cell suspension of EPCs at the 3rd generation (2 × 106 cells/mL) was prepared and transplanted into 12 female rabbits through auricular veins(2 mL). After 3 days, the models of cranial defect with 15 cm diameter were made in the 12 female rabbits. And the defects were repaired with Simvastatin-PLA materials (experimental group, n=6) and PLA materials (control group, n=6), respectively. The bone repair was observed after 8 weeks of operation by gross appearance, X-ray film, and histology; gelatin-ink perfusion and HE staining were used to show the new vessels formation in the defect. Fluorescence in situ hybridization (FISH) was performed to show the EPCs homing at the defect site. Results All experimental animals of 2 groups survived to the end of the experiment. After 8 weeks in experimental group, new bone formation was observed in the bone defect by gross and histology, and an irregular, hyperdense shadow by X-ray film; no similar changes were observed in control group. FISH showed that the male EPC containing Y chromosome was found in the wall of new vessels in the defect of experimental group, while no male EPC containing Y chromosome was found in control group. The percentage of new bone formation in defect area was 91.63% ± 4.07% in experimental group and 59.45% ± 5.43% in control group, showing significant difference (P lt; 0.05). Conclusion Simvastatin can promote bone defect repair, and its mechanism is probably associated with inducing EPCs homing and enhancing vasculogenesis.

    Release date:2016-08-31 05:49 Export PDF Favorites Scan
  • TREATMENT OF BRAIN ISCHEMIC STROKE BY CO-TRANSPLANTATION OF NEURAL STEM CELLS AND ENDOTHELIAL PROGENITOR CELLS

    Objective To discuss the feasibility of treating the brain ischemic stroke by the co-transplantation of the neural stem cells(NSCs) and the endothelial progenitor cells(EPCs). Methods The original biomedical articles concerned with the treatment of the brain ischemic therapy by the use of the NSCs and the EPCs were extensively reviewed as well as retrieved and analyzed. Results The review revealed that the NSCs and the EPCs could migrate to the injured area due to brain ischemic stroke, the environment of the local microcirculation could induce the neurogenesis and the vasculogenesis to repair the injury, and the neurogenesis and vasculogenesis could promote each other. Conclusion The co-transplantation of the NSCs and the EPCscan represent a new promising strategy formore effectively solving the two difficult problems of the neural cell loss andthe vascular obstruction caused by the brain ischemic stroke.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF NEURAL REGULATION MECHANISM OF VASCULOGENESIS

    ObjectiveTo review the research progress of neural regulation mechanism of vasculogenesis. MethodsThe relevant literature on neural regulation mechanism of vasculogenesis was extensively reviewed. ResultsNeural regulation of vasculogenesis depends on synergistic effect among various cells of neurovascular unit, and co-participation of multiple cytokines, and it is closely related to a variety of repair mechanism, such as nerve regeneration and synaptic plasticity, but the specific mechanism need to be further investigated. ConclusionThe research of the neural regulation mechanism of vasculogenesis will contribute to further understanding repair mechanism of nerves and vessels injuries.

    Release date: Export PDF Favorites Scan
  • EFFECTS OF Tempol ON SURVIVAL OF RANDOM PATTERN SKIN FLAPS IN RATS

    ObjectiveTo study the effects of the new small molecular oxygen free radical scavenger Tempol on the survival and vasculogenesis of the long random pattern skin flap (LRPSF) and its mechanism. MethodsEighty-four male Sprague Dawley rats were randomly divided into control and Tempol groups (42 rats in each group). LRPSF of 9 cm×3 cm in size were prepared on the backs of rats in two groups based on the Mcfarlane flap. Rats were administered with Tempol (100 mg/kg) in the Tempol group and with normal saline in the control group by intraperitoneal injection at 15 minutes before operation and at 1-7 day after operation. The rat and the skin flap survival conditions were observed after operation; the survival rate of skin flap was measured, and the vascular structure, vascular volume, and total length of blood vessels were analyzed with Micro-CT three-dimensional imaging after 7 days; HE staining was used to observe the structure of the skin flaps and inflammation, immumohistochemical staining to observe vascular endothelial growth factor (VEGF) expression; water-soluble tetrazolium-1 method was used to measure the content of superoxide dismutase (SOD) and malondialdehyde (MDA), and ELISA to detect the expressions of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) after 1, 3, and 7 days. ResultsAll of rats survived after operation, without hemorrhage, edema, and infection. With the extension of time, necrosis occurred in the distal part of the skin flaps in 2 groups, but the necrosis degree of the Tempol group was lower than that of control group; meanwhile, the blood vessel distribution and continuity were better than those of control group. The skin flaps survival rate, vascular volume, and total length of blood vessels of Tempol group were significantly higher than those of control group after 7 days (P<0.05). The clearer skin flaps structure, lighter inflammation reaction and inflammation cell infiltration, and higher VEGF staining intensity were observed in the Tempol group than the control group after 7 days. There was no significant difference in SOD, MDA, and TNF-α, and IL-6 contents between the 2 groups at immediate after operation. SOD significantly increased, but MDA, TNF-α, and IL-6 contents significantly decreased in the Tempol group when compared with control group after 1, 3, and 7 days (P<0.05). ConclusionTempol can significantly promote the LRPSF survival rates, its mechanism is closely related to the promotion of vasculogenesis and reduction of oxidative stress and inflammation.

    Release date:2016-10-21 06:36 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content