Emotion recognition will be prosperious in multifarious applications, like distance education, healthcare, and human-computer interactions, etc. Emotions can be recognized from the behavior signals such as speech, facial expressions, gestures or the physiological signals such as electroencephalogram and electrocardiogram. Contrast to other methods, the physiological signals based emotion recognition can achieve more objective and effective results because it is almost impossible to be disguised. This paper introduces recent advancements in emotion research using physiological signals, specified to its emotion model, elicitation stimuli, feature extraction and classification methods. Finally the paper also discusses some research challenges and future developments.
Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring.