west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "WANG Fangqun" 3 results
  • Study on regurgitation using the coupling model of left ventricular assist device and cardiovascular system

    Regurgitation is an abnormal condition happens when left ventricular assist devices (LVADs) operated at a low speed, which causes LVAD to fail to assist natural blood-pumping by heart and thus affects patients’ health. According to the degree of regurgitation, three LVAD’s regurgitation states were identified in this paper: no regurgitation, slight regurgitation and severe regurgitation. Regurgitation index (RI), which is presented based on the theory of dynamic closed cavity, is used to grade the regurgitation of LVAD. Numerical results showed that when patients are in exercising, resting and sleeping state, the critical speed between slight regurgitation and no regurgitation are 6 650 r/min, 7 000 r/min and 7 250 r/min, respectively, with corresponding RI of 0.401, 0.300 and 0.238, respectively. And the critical speed between slight regurgitation and severe regurgitation are 5 500 r/min, 6 000 r/min and 6 450 r/min, with corresponding RI of 0.488, 0.359 and 0.284 respectively. In addition, there is a negative relation correction between RI and rotational speed, so that grading the LVAD’s regurgitation can be achieved by determining the corresponding critical speed. Therefore, the detective parameter RI based on the signal of flow is proved to be able to grade LVAD’s regurgitation states effectively and contribute to the detection of LVAD’s regurgitation, which provides theoretical basis and technology support for developing a LVADs controlling system with high reliability.

    Release date:2017-10-23 02:15 Export PDF Favorites Scan
  • Study on the synchronization of biventricular beats with the control mode of left ventricular assist device

    Right ventricular (RV) failure has become a deadly complication of left ventricular assist device (LVAD) implantation, for which desynchrony in bi-ventricular pulse resulting from a LVAD is among the important factor. This paper investigated how different control modes affect the synchronization of pulse between LV (left ventricular) and RV by numerical method. The numerical results showed that the systolic duration between LV and RV did not significantly differ at baseline (LVAD off and cannula clamped) (48.52% vs. 51.77%, respectively). The systolic period was significantly shorter than the RV systolic period in the continuous-flow mode (LV vs. RV: 24.38% vs. 49.16%) and the LV systolic period at baseline. The LV systolic duration was significantly shorter than the RV systolic duration in the pulse mode (LV vs. RV: 28.38% vs. 50.41%), but longer than the LV systolic duration in the continuous-flow mode. There was no significant difference between the LV and RV systolic periods in the counter-pulse mode (LV vs. RV: 43.13% vs. 49.23%). However, the LV systolic periods was shorter than the no-pump mode and much longer than the continuous-flow mode. Compared with continuous-flow and pulse mode, the reduction in rotational speed (RS) brought out by counter-pulse mode significantly corrected the duration of LV systolic phase. The shortened duration of systolic phase in the continuous-flow mode was corrected as re-synchronization in the counter-pulse mode between LV and RV. Hence, we postulated that the beneficial effects on RV function were due to re-synchronizing of RV and LV contraction. In conclusion, decreased RS delivered during the systolic phase using the counter-pulse mode holds promise for the clinical correction of desynchrony in bi-ventricular pulse resulting from a LVAD and confers a benefit on RV function.

    Release date:2021-04-21 04:23 Export PDF Favorites Scan
  • Effect of a delay mode of a ventricular assist device on hemodynamics of the cardiovascular system

    The implantation of biventricular assist device (BiVAD) is more challenging than that of left ventricular assist device for the interaction in the process of multiple input and output. Besides, ventricular assist device (VAD) often runs in constant speed (CS) mode in clinical use and thus BiVAD also faces the problems of low pulsation and imbalance of blood volume between systemic circulation and pulmonary circulation. In this paper, a delay assist mode for a VAD by shortening the support time of VAD was put forward. Then, the effect of the delay mode on cardiac output, pulsation and the function of the aortic valve was observed by numerical method and the rules of hemodynamics were revealed. The research showed that compared with VAD supported in CS mode, the VAD using delay mode in systolic and diastolic period proposed in this paper could meet the demand of cardiac output perfusion and restore the function of the arterial valves. The open ratio of aortic valve (AV) and pulmonary valve (PV) increased with the time set in delay mode, and the blood through the AV/PV helped to balance the left and the right cardiac volume. Besides, delay mode also improved the pulsation index of arterial blood flow, which is conducive to the recovery of the ventricular pulse function of patients.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content