Objective To establ ish the methods to get high activity, high purity, and adequate Schwann cells (SCs), and to provide sufficient seed cells for the peripheral nerve repair. Methods Six 5-day-old, male or female, Sprague Dawley rats were selected and the sciatic nerve (control group) and dorsal root gangl ion (DRG) (ex perimental group) were harvested.Then the sciatic nerves and DRG were digested by co-enzyme and dispersed by medium containing serum to isolate SCs. Freshlyisolated SCs from rats were cultured, purified and subcultured. The 1st generation of SCs were chosen to draw the growth curve of SCs by the counting method and to detect the prol iferation of SCs by MTT assay at 8 days of culture, the purity of SCs by immunocytochemistry of anti-S-100 and the brain-derived neurotrophic factor (BDNF) concentration by ELISA. Results A total of 36-43 DRGs could be obtained in each rat. The number of obtained single SC in experimental group [(7.5 ± 0.6)× 106] was significantly higher than that in control group [(3.5 ± 0.4)× 106 ] (t=13.175, P=0.000). SCs reached logarithm prol iferation phase at 3 days. With time, the cell number and the prol iferation absorbance (A) value of 2 groups all showed upward trend. The number and A value of experimental group were significantly higher than those of control group (P lt; 0.05). The SCs purity of experimental group (92.08% ± 3.45%) was significantly higher than that of control group (77.50% ± 3.57%) (t=6.689, P=0.001).The concentrations of BDNF at 3 days and 5 days in experimental group were significantly higher than those of control group (P lt; 0.05). Conclusion The sufficient amount, high purity, and viabil ity of SCs from DRGs can meet the needs of studies on peripheral nerve repairment.