This paper presents a unit free-form deformation (FFD) method applied to rapid three-dimensioanl (3D) bone reconstruction, which was based on traditional FFD. With the femur as an example, we reconstructed a 3D model of femur from two X-ray images and a standardized model by taking advantage of unit FFD algorithm. The X-ray images and its parameters were taken by C-arm device. Those parameters and X-ray contour are contributed to 3D reconstruction. The out contours of X-ray image and standard model were connected by point matching algorithm. The unit-FFD lattice was built to reconstruct standard model and finally made the contour of X-ray image and standard model exactly the same. Experiments on shape accuracy, robustness and time consuming, carried out by 35 specimen from cadaver, showed that mean error of shape (0.52 mm) and mean construction time (112 s) were lower than those using traditional method (0.7-2.6 mm, 8-20 min). The method proposed in this paper shows a good prospect in clinical application and related research.
This study aims to establish a multi-segment foot model which can be applied in dynamic gait simulation. The effectiveness and practicability of this model were verified afterwards by comparing simulation results with those of previous researches. Based on a novel hybrid dynamic gait simulator, bone models were imported into automatic dynamic analysis of mechanical systems (ADAMS). Then, they were combined with ligaments, fascia, muscle and plantar soft tissue that were developed in ADMAS. Multi-segment foot model was consisted of these parts. Experimental data of human gait along with muscle forces and tendon forces from literature were used to drive the model and perform gait simulation. Ground reaction forces and joints revolution angles obtained after simulation were compared with those of previous researches to validate this model. It showed that the model developed in this paper could be used in the dynamic gait simulation and would be able to be applied in the further research.